Чистый кремний. Оптимизация нового метода получения чистого кремния

Свойства 14 Si.

Атомная масса

28,086

кларк, ат.%

(распространненость в природе)

16,7

Электронная конфигурация*

Агрегатное состояние

(н. у.).

твердое вещество

0,132

Цвет

темно-серый блестящий

0,034

1423

Энергия ионизации

8,151

2355

Относительная электро- отрицательность

1,74

Плотность

2,3263

Возможные степени окисления

4, +2, +4

Стандартный электродный потенциал

*Приведена конфигурация внешних электронных уровней атома элемента. Конфигурация остальных электронных уровней совпадает с таковой для благородного газа, завершающего предыдущий период и указанного в скобках.

Нахождение в природе. Кремний после кислорода — самый распространенный элемент в земной коре. В отличие от углерода в свободном состоянии кремний в природе не встречается. Наиболее распространенными его соединениями являются оксид кремния (IV) SiO 2 и соли кремниевых кислот — силикаты. Они образуют оболочку земной коры. Соединения кремния содержатся в организмах растений и животных.

Природные силикаты имеют сложный состав и строение. Вот состав некоторых природных силикатов: полевой шпат К 2 О× Аl 2 O 3 × 6SiO 2 , асбест 3MgО× 2SiO 2 × 2H 2 O, cлюда К 2 О× 3Аl 2 O 3× 6SiO 2 × 2H 2 O, каолинит 3Аl 2 O 3 × 2SiO 2 × 2H 2 O.

Силикаты, содержащие в своем составе также оксид алюминия, называются алюмосиликатами. Из названных выше силикатов алюмосиликатами являются полевой шпат, каолинит и слюда. В природе наиболее распространены именно алюмосиликаты, например полевые шпаты. Распространены также смеси различных силикатов. Так, горные породы — граниты и гнейсы — состоят из кристалликов кварца, полевого шпата и слюды.

Основным продуктом разрушения является минерал каолинит — главная составная часть белой глины. В результате выветривания горных пород образовались залежи глины, песка и солей.

Получение. В промышленности кремний получают восстановлением SiO 2 коксом в электрических печах:

В лаборатории в качестве восстановителей используют магний или алюминий:

Наиболее чистый кремний получают восстановлением тетрахлорида кремния парами цинка:

Применение. Кремний используют в качестве полупроводника. Из него изготовляют, так называемые, солнечные батареи, превращающие световую энергию в электрическую (питание радиоустановок космических кораблей). Кремний используют в металлургии для получения кремнистых сталей, обладающих высокой жаростойкостью и кислотоупорностью.

Физические свойства. Кристаллический кремний — вещество темно-серого цвета со стальным блеском. Структура кремния аналогична структуре алмаза. В его кристалле каждый атом окружен тетраэдрически четырьмя другими и связан с ними ковалентной связью, которая значительно слабее, чем между атомами углерода в алмазе. В кристалле кремния даже при обычных условиях часть ковалентных связей разрушается. Поэтому в нем имеются свободные электроны, которые обусловливают небольшую электрическую проводимость. При освещении и нагревании увеличивается число разрушаемых связей, а значит, увеличивается число свободных электронов и возрастает электрическая проводимость. Так следует объяснять полупроводниковые свойства кремния.

Кремний очень хрупок, его плотность 2,33 г/см 3 . Как и уголь, относится к тугоплавким веществам.

Кремний состоит из трех стабильных изотопов: 28 14 Si (92,27%), 29 14 Si (4,68%) и 30 14 S i (3,05%).

Химические свойства. По химическим свойствам кремний, как и углерод, является неметаллом, но его неметалличность выражена слабее, так как он имеет больший атомный радиус. Поскольку у атомов кремния на внешнем энергетическом уровне находится 4 электрона, то для кремния характерна степень окисления как -4, так и +4 (известно соединение кремния, где его степень окисления равна +2).

Кремний при обычных условиях довольно инертен, что следует объяснить прочностью его кристаллической решетки. Непосредственно он взаимодействует только со фтором:

Кислоты (кроме смеси плавиковой HF и азотной HNO 3) на кремний не действуют. Однако он растворяется в гидроксидах щелочных металлов, образуя силикат и водород:

Из двух аллотропных модификаций кремния — кристаллической и аморфной — химически более активным является аморфный кремний. Он реагирует с кислородом при нагревании, образуя SiO 2:

а также со всеми галогенами, например:

При высокой температуре кремний соединяется с углеродом, образуя карборунд SiC:

Карборунд имеет алмазоподобную кристаллическую решетку, в которой каждый атом кремния окружен четырьмя атомами углерода и наоборот, а ковалентные связи очень прочны, как в алмазе. Поэтому по твердости он близок к алмазу. Из карбида кремния изготовляют точильные камни и шлифовальные круги.

Силицид магния. В реакциях с активными металлами, протекающих с образованием силицидов, кремний выступает в роли окислителя:

При высоких температурах кремний восстанавливает многие металлы из их оксидов.

Силан. При действии на силициды соляной кислоты получают простейшее водородное соединение кремния силан SiH 4:

Силан — ядовитый газ с неприятным запахом, самовоспламеняется на воздухе:

Оксид кремния (IV). Оксид кремния (IV) называют также кремнеземом. Это твердое тугоплавкое вещество (температура плавления 1700°С), широко распространенное в природе в двух видах:1) кристаллический кремнезем — в виде минерала кварца и его разновидностей (горный хрусталь, халцедон, агат, яшма, кремень); кварц составляет основу кварцевых песков, широко используемых в строительстве и в силикатной промышленности; 2) аморфный кремнезем — в виде минерала опала состава SiO 2× п H 2 O; землистыми формами аморфного кремнезема являются диатомит, трепел (инфузорная земля); примером искусственного аморфного безводного кремнезема может служить силикагель, который получается из метасиликата натрия:

Силикагель имеет развитую поверхность, а поэтому хорошо адсорбирует влагу.

При 1710° кварц плавится. При быстром охлаждении расплавленной массыобразуется кварцевое стекло. Оно имеет очень малый коэффициент расширения, благодаря чему раскаленное кварцевое стекло не трескается при быстром охлаждении водой. Из кварцевого стекла изготовляют лабораторную посуду и приборы для научных исследований.

Простейшая формула оксида кремния (IV) SO 2 аналогична формуле оксида углерода (IV) С O 2 . Между тем физические свойства их резко отличаются (SiO 2 — твердое вещество, CO 2 — газ). Это различие объясняется строением кристаллических решеток. С0 2 кристаллизуется в молекулярной решетке, SiO 2 — в атомной. Структуру SiO 2 в плоскостном изображении можно представить так:

Координационное число атома углерода в твердом СO 2 равно 2, а кремния в SiO 2 равно 4. Каждый атом кремния заключен в тетраэдр из 4 атомов кислорода. При этом атом кремния находится в центре, а по вершинам тетраэдра расположены атомы кислорода. Весь кусок кремнезема можно рассматривать как кристалл, формула которого (SiO 2)n. Такое строение оксида кремния (IV) обусловливает его высокую твердость и тугоплавкость.

По химическим свойствам оксид кремния (IV) SiO 2 относится к кислотным оксидам. При сплавлении его с твердыми щелочами, основными оксидами и карбонатами образуются соли кремниевой кислоты:

С оксидом кремния (IV) взаимодействует только плавиковая кислота:

С помощью этой реакции производится травление стекла.

В воде оксид кремния (IV) не растворяется и с ней химически не взаимодействует. Поэтому кремниевую кислоту получают косвенным путем, действуя кислотой на раствор силиката калия или натрия:

При этом кремниевая кислота(в зависимости от концентрации исходных растворов соли и кислоты) может быть получена как в виде студнеобразной массы, содержащей воду, так и в виде коллоидного раствора (золя).

Кремниевые кислоты. SiO 2 является ангидридом ряда кремниевых кислот, состав которых можно выразить общей формулой xSiO 2 × yH 2 O,где х и у целые числа:

1) х = 1, у = 1: SiO 2 × H 2 O, т. е. H 2 SiO 3 — метакремниевая кислота;

2) х = 1, у = 2: SiO 2 × 2H 2 O, т. е. H 4 SiO 4 — ортокремниевая кислота;

3) х = 2, у = 1: 2SiO 2 × H 2 O, т. е. H 2 Si 2 O 5 — двуметакремниевая кислота.

Кремниевая кислота построена из тетраэдрических структурных звеньев (в каждом таком звене атом кремния находится в центре тетраэдра, а по вершинам расположены атомы кислорода). Структурные звенья, объединяясь в цепи, образуют более устойчивые поликремниевые кислоты:

Состав такого соединения можно выразить формулой (H 2 SiO 3) n . Однако обычно кремниевую кислоту изображают формулой H 2 SiO 3 . H 2 SiO 3 —кислота очень слабая, в воде мало растворима. При нагревании легко распадается аналогично угольной кислоте:

Все кремниевые кислоты очень слабые (слабее угольной).

Силикаты. Соли всех кремниевых кислот называют силикатами, хотя, как правило, в учебной литературе под силикатами подразумевают соли метакремниевой кислоты. Их состав обычно изображают формулой в виде соединений оксидов элементов. Например, силикат кальция CaSiO 3 можно выразить так: СаО× SiO 2 .

Силикаты состава R 2 О× nSiO 2 , где R 2 O — оксиды натрия или калия, называются растворимым стеклом, а их концентрированные водные растворыжидким стеклом. Наибольшее значение имеет натриевое растворимое стекло.

При стоянии на воздухе растворы силикатов мутнеют, так как находящийся в воздухе оксид углерода (IV) вытесняет кремниевую кислоту из ее солей:

Кремниевая кислота практически нерастворима в воде — это свойство используют как качественную реакцию на ион SiO 3 2- .

Силикаты получают сплавлением оксида кремния с щелочами или карбонатами:

Применение силикатов. Наиболее широко используются силикаты натрия и калия. Концентрированные растворы этих солей называют жидким стеклом; они имеют сильнощелочную реакцию вследствие гидролиза. Жидкое стекло используют при изготовлении клея и водонепроницаемых тканей. Жидкое стекло применяется в качестве связующего при изготовлении кислотоупорных бетонов, а также для изготовления замазок, конторского клея. Им пропитывают ткани, дерево и бумагу для придания им огнестойкости и водонепроницаемости.

Кремний – второй по распространенности элемент в земной коре после кислорода . По массе он составляет 27.7% земной коры. В природе он обычно встречается в виде сложных силикатов, то есть соединений оксида кремния с оксидами металлов, составляющих до 90% массы земной коры, а также, более редко, в виде чистого SiO 2 , кварца, Рис. 1 . Тот же диоксид кремния, только мелкокристаллический, является основным компонентом обычного песка.


Именно переработкой такого песка и получают кремний, используемый в промышленности. Самым распространенным современным методом получения элементного кремния является восстановление диоксида кремния коксом в дуговых электрических печах, Рис. 2 :


Смесь песка с коксом поступает в кратер печи, где она нагревается до 2000°С электрической дугой, образующейся между углеродными электродами. При таких температурах углерод кокса и электродов взаимодействует с оксидом кремния, превращаясь в газообразный монооксид углерода, и восстанавливает песок до элементного кремния:

SiO 2 + 2C → Si + 2CO

Получающийся расплавленный кремний стекает через специальное отверстие внизу печи. После первичной очистки от шлака и газов, кремнию дают остыть, а потом дробят до нужного размера. В результате, в зависимости от используемых на производстве методов очистки, получается кремний либо технической (95 – 98%) либо металлургической (98 – 99.9%) чистоты, Рис. 3 . Основными примесями в получаемом кремнии являются углерод и другие элементы, содержавшиеся в исходном кремнеземе, такие как бор, фосфор, алюминий¸ железо.


Главным побочным продуктом такого процесса является раскаленная смесь монооксида углерода и паров кремния. После выхода из печи полученные газы охлаждают, нагревая водяной пар, который далее используется для генерации электроэнергии, значительно снижая затраты на производство. Охлажденные же газы фильтруют, конденсируя кремниевые пары и получая дополнительно еще около 300 кг кремниевого конденсата на каждую тонну произведенного металлического кремния .

2. Очистка технического кремния через силаны

Большая часть кремния технической чистоты используется далее в металлургических производствах, в качестве компонента сплавов, например, бронзы, при выплавке чугуна и сталей, а также в качестве легирующего элемента или модификатора свойств металлов. Только небольшая часть металлургического кремния очищается дальше для использования в полупроводниковой промышленности.

Очистка такого кремния происходит следующим образом. Измельченный в порошок металлургический кремний смешивают с соляной кислотой в отсутствие воды при 300 °С в специальном реакторе и получают трихлорсилан SiHCl 3 .

Si + 3HCl → SiHCl 3 + H 2

В ходе этой реакции такие примеси, как Fe, Al, и B, образуют свои галоидные соединения (FeCl 3 , AlCl 3 , и BCl 3). Низкая температура кипения SiHCl 3 , составляющая 31.8°С, используется для его очистки от примесей дистилляцией. В получившемся таким образом SiHCl 3 концентрация электрически активных примесей, таких как Al, P, B, Fe, Cu или Au, составляет меньше одного атома на миллиард атомов кремния .

Для восстановления кремния в технологиях, использующих трихлорсилан, в основном применяется Сименс-процесс (называемый так из-за того, что в свое время был разработан компанией Siemens): в протоке смеси газообразных силанов и водорода на поверхности нагретых до 650−1300°С кремниевых стержней (либо крошек в кипящем слое) происходит восстановление силана и осаждение свободного кремния .

SiHCl 3 + H 2 → Si + 3HCl

Эта реакция протекает в больших вакуумных камерах в течение 200−300 часов, в результате чего образуются бруски ультрачистого поликристаллического кремния диаметром 150−200 мм, Рис. 4 . Образующиеся в ходе реакции газообразные продукты уносятся протоком непрореагировавшей парогазовой смеси и после очистки и разделения могут быть использованы повторно.


Также иногда применяют другие модификации этого метода, использующие разложение силана SiH 4 , тетрахлорсилана SiCl 4 или других галогенидов кремния, таких как фторид SiF 4 . Они бывают удобными для удаления некоторых специфических примесей, а также, благодаря различным температурам кипения разных силанов, могут быть более выгодными по энергоемкости и материалоемкости по сравнению с Сименс-процессом . Тем не менее, на сегодняшний день основным методом получения поликристаллического кремния является именно восстановление трихлорсилана.

3. Получение монокристаллического кремния

Следующей стадией обработки кремния, предназначенного для использования в микроэлектронике, является получение монокристаллического кремния высокой чистоты. Вообще, кристаллический кремний высокой чистоты в зависимости от предназначения подразделяют на кремний солнечного качества и кремний электронного качества. Солнечный кремний содержит более 99.99% кремния по весу и используется для производства солнечных батарей. Электронный кремний – наиболее качественный, содержащий более 99.999% кремния по весу, используется для производства электронных приборов, микросхем, и т.д. . Для изготовления полупроводниковых пластин, на основе которых делают интегральные микросхемы, используется высокочистый электронный кремний с чистотой порядка 99.9999999% (т.н. «девять девяток») . Основная масса кристаллов кремния электронного качества является т.н. бездислокационными кристаллами, т.е. такими кристаллами, количество дефектов кристаллической решетки которых не превышает 10 штук на см 2 , однако, в некоторых случаях, для изготовления электронных приборов также применяются слитки с двойниковой (т.е. основанной на двух монокристаллах) или даже поликристаллической структурой.

Самым известным методом получения монокристаллического кремния высокой чистоты является метод Чохральского .

Метод был разработан польским химиком Яном Чохральским и первоначально использовался им для измерения степени кристаллизации металлов (олово, цинк, свинец).

По некоторым сведениям, Чохральский открыл свой знаменитый метод в 1916 году, когда случайно уронил свою ручку в тигель с расплавленным оловом. Вытягивая ручку из тигля, он обнаружил, что вслед за металлическим пером тянется тонкая нить застывшего олова. Заменив перо ручки микроскопическим кусочком металла, Чохральский убедился, что образующаяся таким образом металлическая нить имеет монокристаллическую структуру. В экспериментах, проведенных Чохральским, были получены монокристаллы размером около одного миллиметра в диаметре и до 150 см длиной. Чохральский изложил суть своего открытия в статье «Новый метод измерения степени кристаллизации металлов», опубликованной в немецком журнале «Zeitschrift für Physikalische Chemie» (1918) .

Выращивание монокристаллов методом Чохральского происходит следующим образом, Рис. 5 :


  1. Дробленый поликристаллический кремний (шихту) закладывают в кварцевый тигель.
  2. В установке создается атмосфера с необходимыми параметрами. Для монокристаллического кремния – это нейтральная аргоновая атмосфера с давлением не более чем 1/25 атмосферного. Изменяя давление и состав атмосферы можно регулировать содержание летучих легирующих компонентов в получающемся монокристалле.
  3. Навеска шихты нагревается до температуры порядка 1500 ˚С, расплавляется, при этом подвод энергии ведется преимущественно снизу и с боков контейнера. Плавление и дальнейшее выдерживание расплавленного кремния производится в соответствии с определенными условиями, необходимыми для стабилизации потоков и равномерного распределения температуры.
  4. Далее затравочный монокристалл, закрепленный на подвеске, опускают вниз и приводят в контакт с поверхностью расплава, где он оплавляется для удаления дефектов и обеспечения равномерного роста кристалла.
  5. После этого начинается вытягивание кристалла наверх в холодную зону, Рис. 6 . Размер получаемого кристалла регулируют, изменяя температуру расплава и скорость вытягивания. Также нужно учитывать, что при выращивании кристаллов из тигля происходит загрязнение расплава материалом тигля. Так, для кремния, выращиваемого из кварцевого тигля, главными загрязняющими элементами будут содержащиеся в кварце кислород, бор, фосфор, алюминий и железо. С другой стороны, в расплав также можно добавлять и легирующие компоненты, изменяющие в нужную сторону полупроводниковые свойства получаемого монокристалла. Интересно, что примесный кислород, попадающий в кристалл из кварца тигля, предотвращает загрязнение монокристалла атомами металлов, негативно влияющих на полупроводниковые свойства кремния, а также увеличивает его прочность.


Для обеспечения более равномерного распределения температуры и примесей по объему расплава затравочный кристалл и тигель с расплавом вращают, причем обычно в противоположных направлениях. Несмотря на это, вращения в заведомо неоднородно нагретой среде всегда приводят к появлению на поверхности слитка мелкой винтовой нарезки. Более того, в случае неблагоприятных условий роста, помимо винтовой нарезки на поверхности, сам слиток может начать расти в форме штопора. Аналогичная картина и с распределением примесей: несмотря на вращения, вдоль фронта кристаллизации всегда остается неподвижная область расплава переменной толщины, в которой перенос примесей осуществляется медленно, исключительно за счет диффузии. Это обусловливает неравномерность распределения компонентов расплава по диаметру слитка.

С другой стороны, метод Чохральского отличается наличием большого объема расплава, который по мере роста слитка постепенно уменьшается за счет формирования монокристалла. При росте кристалла расплав постепенно обедняется компонентами, интенсивно встраивающимися в кристалл, и обогащается компонентами, оттесняемыми при росте кристалла. По мере роста концентрации компонента в расплаве его концентрация повышается и в кристалле, поэтому распределение компонентов по длине слитка неравномерно (для кристаллов кремния характерно повышение концентраций углерода и легирующих примесей к концу слитка).

  1. После вытягивания кристалла нужного размера, температуру повышают, скорость вытягивания увеличивают, в результате кристалл сужается, после чего производится отрыв слитка от расплава и его постепенное охлаждение.

Все режимные параметры каждого из этапов процесса являются, как правило, ноу-хау конкретного производителя. В результате получаются цилиндрические слитки моно- или поликристаллической структуры с диаметром до 40 см, Рис. 7.

Несмотря на то, что метод Чохральского повсеместно используется для выращивания подложек в промышленных масштабах, полученный с его помощью кремний обладает некоторыми недостатками, которые не желательны, если ваша цель - максимально возможный КПД, как, например, в лабораториях или при изготовлении элементов для солнечных батарей.

Подложки Чохральского содержат большое количество кислорода. Кислород уменьшает время жизни неосновных носителей заряда, таким образом снижая напряжение, ток и КПД. Кроме того, при больших температурах кислород или соединения кислорода с другими веществами могут стать активными, что делает подложки чувствительными к высокотемпературной обработке. Чтобы избавиться от этих проблем, используют метод зонной плавки .

Обработке таким методом, как и в случае с методом Чохральского, подвергается поликристаллический кремний солнечного или электронного качества, полученный в результате силановой очистки. Суть метода заключается в том, что область, расплавленная с помощью индукционной катушки, медленно движется вдоль поликристаллического кремниевого слитка, Рис. 8. Примеси при этом не кристаллизируются, а концентрируются в расплавленной области. Также из-за отсутствия примесей в пройденной области, слиток может формировать идеальный монокристалл, если в его начало поместить затравочный кристалл для инициации направленного роста. Таким образом, после прохождения катушки, примеси оказываются собранными в одной части получившегося монокристалла, которую потом удаляют .

После этого выращенные монокристаллы кремния подвергаются механической обработке. Как правило, механическая обработка слитков кремния ведется с использованием алмазного инструмента: ленточных пил, пильных дисков, шлифовальных профилированных и непрофилированных дисков, чаш. На текущий момент в оборудовании наблюдается постепенный переход с ленточных пил на проволочную резку алмазно-импрегнированной проволокой, а также проволочную резку стальной проволокой в карбид-кремниевой суспензии.

При механической обработке сначала из слитка вырезают части пригодные (по своим структурным, геометрическим и электрофизическим свойствам) для изготовления приборов. Затем монокристаллический кремний, предназначенный для изготовления электронных приборов (электронный кремний), подвергается калибровке под заданный диаметр . После предварительной подготовки слиток нарезается на пластины диаметром до 45 см и толщиной в несколько сот микрометров

Министерство образования науки России

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

"МАТИ - Российский государственный технический университет имени К.Э. Циолковского" (МАТИ)

Кафедра "Испытания летательных аппаратов"


Реферат

По курсу "Химия"

Тема: "Кремний"


Студент: Акбаев Дауыт Ринатович

Группа: 2ИЛА-1ДС-298

Преподаватель: Евдокимов Сергей Васильевич


Москва 2014


Кремний в живых организмах

История открытия и использование

Распространение в природе

Строение атома и основные химические и физические свойства

Получение

Применение

Соединения

Приложение


1. Кремний в живых организмах


Кремний (лат. Silicium), Si, химический элемент IV группы периодической системы Менделеева; атомный номер 14, атомная масса 28,086. В природе элемент представлен тремя стабильными изотопами: 28 Si (92,27%), 29 Si (4,68%) и 30 Si (3,05%)

Кремний в организме находится в виде различных соединений, участвующих главным образом в образовании твёрдых скелетных частей и тканей. Особенно много кремния могут накапливать некоторые морские растения (например, диатомовые водоросли) и животные (например, кремнероговые губки, радиолярии), образующие при отмирании на дне океана мощные отложения двуокиси кремния.

В холодных морях и озёрах преобладают биогенные илы, обогащенные кремнием, в тропических морях - известковые илы с низким содержанием кремния. Среди наземных растений много кремния накапливают злаки, осоки, пальмы, хвощи. У позвоночных животных содержание двуокиси кремния в зольных веществах 0,1-0,5%. В наибольших количествах кремний обнаружен в плотной соединительной ткани, почках, поджелудочной железе. В суточном рационе человека содержится до 1 г кремния.

При высоком содержании в воздухе пыли двуокиси кремния она попадает в лёгкие человека и вызывает заболевание - силикоз (от лат. silex - кремень), заболевание человека, вызываемое длительным вдыханием пыли, содержащей свободную двуокись кремния, относится к профессиональным болезням. Встречается у рабочих горнорудной, фарфорофаянсовой, металлургической, машиностроительной промышленности. Силикоз - наиболее неблагоприятно протекающее заболевание из группы пневмокониозов; чаще, чем при других заболеваниях, отмечаются присоединение туберкулёзного процесса (т. н. силикотуберкулёз) и другие осложнения.


2. История открытия и использование


Историческая справка. Соединения кремния, широко распространённые на земле, были известны человеку с каменного века. Использование каменных орудий для труда и охоты продолжалось несколько тысячелетий. Применение соединений кремния, связанное с их переработкой, - изготовление стекла - началось около 3000 лет до н. э. (в Древнем Египте). Раньше других известное соединение кремния - двуокись SiO2 (кремнезём). В 18 в. кремнезём считали простым телом и относили к "землям" (что и отражено в его названии). Сложность состава кремнезёма установил И.Я. Берцелиус.

В свободном состоянии кремний впервые был получен в 1811 году французским учёным Ж. Гей-Люссаком и О. Тенаром.

В 1825 году шведский минералог и химик Иенс Якоб Берцелиус получил аморфный кремний. Бурый порошок аморфного кремния был получен восстановлением металлическим калием газообразного тетрафторида кремния:

4 + 4K = Si + 4KF


Позже была получена кристаллическая форма кремния. Перекристаллизацией кремния из расплавленных металлов были получены серого цвета твёрдые, но хрупкие кристаллы с металлическим блеском. Русские названия элемента кремния ввёл в обиход Г.И. Гесс в 1834 году.


. Распространение в природе


Кремний после кислорода - самый распространённый элемент (27,6%) на земле. Это элемент, который входит в большинство минералов и горных пород, составляющих твёрдую оболочку земной коры. В земной коре кремний играет такую же первостепенную роль, как углерод в животном и растительном мире. Для геохимии К. важна исключительно прочная связь его с кислородом. Наиболее широко распространённые соединения кремния - оксид кремния SiO2 и производные кремниевых кислот, называемые силикатами. Оксид кремния (IV) встречается в виде минерала кварца (кремнезем, кремень). В природе из этого соединения сложены целые горы. Попадаются очень крупные, массой до 40 тонн, кристаллы кварца. Обычный песок состоит из мелкого кварца, загрязнённого различными примесями. Ежегодное мировое потребление песка достигает 300 млн. тонн.

Из силикатов наиболее широко в природе распространены алюмосиликаты (каолин Al2O3*2SiO2*2H2O, асбест CaO*3MgO*4SiO2, ортоклаз K2O*Al2O3*6SiO2 и др.). Если в состав минерала кроме оксидов кремния и алюминия входят оксиды натрия, калия или кальция, то минерал носит название полевого шпата (белая слюда и др.). На долю полевых шпатов приходится около половины известных в природе силикатов. Горные породы гранит и гнейс включают кварц, слюду, полевой шпат.

В состав растительного и животного мира кремний входит в незначительных количествах. Его содержат стебли некоторых видов овощей и хлебных злаков. Этим объясняется повышенная прочность стеблей этих растений. Панцири инфузорий, тела губок, яйца и перья птиц, шерсть животных, волосы, стекловидное тело глаза также содержат кремний.

Анализ образцов лунного грунта, доставленного кораблями показали присутствие оксида кремния в количестве более 40 процентов. В составе каменных метеоритов содержание кремния достигает 20 процентов.


. Строение атома и основные химические и физические свойства


Кремний образует тёмно-серые с металлическим блеском кристаллы, имеющие кубическую гранецентрированную решётку типа алмаза с периодом а = 5,431Å, плотностью 2,33 г/см³. При очень высоких давлениях получена новая (по-видимому, гексагональная) модификация с плотностью 2,55 г/см³. К. плавится при 1417°С, кипит при 2600°С. Удельная теплоёмкость (при 20-100°С) 800 дж/(кг×К), или 0,191 кал/(г×град); теплопроводность даже для самых чистых образцов не постоянна и находится в пределах (25°С) 84-126 вт/(м×К), или 0,20-0,30 кал/(см×сек×град). Температурный коэффициент линейного расширения 2,33×10-6 К-1; ниже 120K становится отрицательным. Кремний прозрачен для длинноволновых ИК-лучей; показатель преломления (для l=6 мкм) 3,42; диэлектрическая проницаемость 11,7. Кремний диамагнитен, атомная магнитная восприимчивость -0,13×10-6 . Твёрдость кремния по Моосу 7,0, по Бринеллю 2,4 Гн/м² (240 кгс/мм²), модуль упругости 109 Гн/м² (10890 кгс/мм²), коэффициент сжимаемости 0,325×10-6 см² /кг. Кремний хрупкий материал; заметная пластическая деформация начинается при температуре выше 800°С.

Кремний - полупроводник, находящий всё большее применение. Электрические свойства К. очень сильно зависят от примесей. Собственное удельное объёмное электросопротивление кремния при комнатной температуре принимается равным 2,3×103 ом×м (2,3×105 ом×см).

Полупроводниковый кремний с проводимостью р-типа (добавки В, Al, In или Ga) и n-типа (добавки Р, Bi, As или Sb) имеет значительно меньшее сопротивление. Ширина запрещенной зоны по электрическим измерениям составляет 1,21 эв при 0 К и снижается до 1,119 эв при 300 К.

В соответствии с положением кремния в периодической системе Менделеева 14 электронов атома кремния распределены по трём оболочкам: в первой (от ядра) 2 электрона, во второй 8, в третьей (валентной) 4; конфигурация электронной оболочки 1s2 2s2 2p6 3s2 3p2 . Последовательные потенциалы ионизации (эв): 8,149; 16,34; 33,46 и 45,13. Атомный радиус 1,33Å, ковалентный радиус 1,17Å, ионные радиусы Si4+ 0,39Å, Si4- 1,98Å.

В соединениях кремния (аналогично углероду) 4-валентен. Однако, в отличие от углерода, кремний наряду с координационым числом 4 проявляет координационное число 6, что объясняется большим объёмом его атома (примером таких соединений являются кремнефториды, содержащие группу 2-).

Химическая связь атома кремния с другими атомами осуществляется обычно за счёт гибридных sp3-орбиталей, но возможно также вовлечение двух из его пяти (вакантных) 3d-орбиталей, особенно когда кремний является шестикоординационным. Обладая малой величиной электроотрицательности, равной 1,8 (против 2,5 у углерода; 3,0 у азота и т. д.), кремний в соединениях с неметаллами электроположителен, и эти соединения носят полярный характер. Большая энергия связи с кислородом Si-O, равная 464 кдж/моль (111 ккал/моль), обусловливает стойкость его кислородных соединений (SiO2 и силикатов). Энергия связи Si-Si мала, 176 кдж/моль (42 ккал/моль); в отличие от углерода, для К. не характерно образование длинных цепей и двойной связи между атомами Si. На воздухе кремний благодаря образованию защитной окисной плёнки устойчив даже при повышенных температурах. В кислороде окисляется начиная с 400°С, образуя кремния двуокись SiO2. Известна также моноокись SiO, устойчивая при высоких температурах в виде газа; в результате резкого охлаждения может быть получен твёрдый продукт, легко разлагающийся на тонкую смесь Si и SiO2. Кремний устойчив к кислотам и растворяется только в смеси азотной и фтористоводородной кислот; легко растворяется в горячих растворах щелочей с выделением водорода. Кремний реагирует с фтором при комнатной температуре, с остальными галогенами - при нагревании с образованием соединений общей формулы SiX4 (см. Кремния галогениды). Водород непосредственно не реагирует с кремнием, и кремневодороды (силаны) получают разложением силицидов. Известны кремневодороды от SiH4 до Si8H18 (по составу аналогичны предельным углеводородам). Кремний образует 2 группы кислородсодержащих силанов - силоксаны и силоксены. С азотом кремний реагирует при температуре выше 1000°С. Важное практическое значение имеет нитрид Si3N4, не окисляющийся на воздухе даже при 1200°С, стойкий по отношению к кислотам (кроме азотной) и щелочам, а также к расплавленным металлам и шлакам, что делает его ценным материалом для химической промышленности, для производства огнеупоров и др. Высокой твёрдостью, а также термической и химической стойкостью отличаются соединения кремния с углеродом (кремния карбид SiC) и с бором (SiB3, SiB6, SiB12). При нагревании кремний реагирует (в присутствии металлических катализаторов, например меди) с хлорорганическими соединениями (например, с CH3Cl) с образованием органогалосиланов [например, Si(CH3)3CI], служащих для синтеза многочисленных кремнийорганических соединений.


5. Получение


Наиболее простым и удобным лабораторным способом получения кремния является восстановление оксида кремния SiO2 при высоких температурах металлами-востановителями. Вследствие устойчивости оксида кремния для восстановления применяют такие активные восстановители, как магний и алюминий:


SiO2 + 4Al = 3Si + 2Al2O3


При восстановлении металлическим алюминием получают кристаллический кремний. Способ восстановления металлов из их оксидов металлическим алюминием открыл русский физикохимик Н.Н. Бекетов в 1865 году. При восстановлении оксида кремния алюминием выделяющейся теплоты не хватает для расплавления продуктов реакции - кремния и оксида алюминия, который плавится при 205°С. Для снижения температуры плавления продуктов реакции в реакционную смесь добавляют серу и избыто алюминия. При реакции образуется легкоплавкий сульфид алюминия:

2Al + 3S = Al2S3


Капли расплавленного кремния опускаются на дно тигля.

Кремний технической чистоты (95-98%) получают в электрической дуге восстановлением кремнезёма SiO2 между графитовыми электродами.

2+2C=Si+2CO


В связи с развитием полупроводниковой техники разработаны методы получения чистого и особо чистого кремния. Это требует предварительного синтеза чистейших исходных соединений кремния, из которых кремний извлекают путём восстановления или термического разложения.

Чистый полупроводниковый кремний получают в двух видах: поликристаллический (восстановлением SiCl4 или SiHCl3 цинком или водородом, термическим разложением SiСl4 и SiH4) и монокристаллический (бестигельной зонной плавкой и "вытягиванием" монокристалла из расплавленного кремния - метод Чохральского).

Путём хлорирования технического кремния получают тетрахлорид кремния. Старейшим методом разложения тетрахлорида кремния является метод выдающегося русского химика академика Н.Н. Бекетова. Метод этот можно представить уравнением:

4+Zn=Si+2ZnCl2.


Здесь пары тетрахлорида кремния, кипящего при температуре 57,6°C, взаимодействуют с парами цинка.

В настоящее время тетрахлорид кремния восстанавливают водородом. Реакция протекает по уравнению:

SiCl4+2Н2=Si+4НCl.


Кремний получается в порошкообразном виде. Применяют и йодидный способ получения кремния, аналогичный описанному ранее йодидному методу получения чистого титана.

Чтобы получить чистыми кремний, его очищают от примесей зонной плавкой аналогично тому, как получают чистый титан.

Для целого ряда полупроводниковых приборов предпочтительны полупроводниковые материалы, получаемые в виде монокристаллов, так как в поликристаллическом материале имеют место неконтролируемые изменения электрических свойств.

При вращении монокристаллов пользуются методом Чохральского, заключающимся в следующем: в расплавленный материал опускают стержень, на конце которого имеется кристалл данного материала; он служит зародышем будущего монокристалла. Стержень вытягивают из расплава с небольшой скоростью до 1-2 мм/мин. В результате постепенно выращивают монокристалл нужного размера. Из него вырезают пластинки, используемые в полупроводниковых приборах.


. Применение


Специально легированный кремний широко применяется как материал для изготовления полупроводниковых приборов (транзисторы, термисторы, силовые выпрямители тока, управляемые диоды - тиристоры; солнечные фотоэлементы, используемые в космических кораблях, и т. д.). Поскольку кремний прозрачен для лучей с длиной волны от 1 до 9 мкм, его применяют в инфракрасной оптике.

Кремний имеет разнообразные и всё расширяющиеся области применения. В металлургии кремний используется для удаления растворённого в расплавленных металлах кислорода (раскисления). Кремний является составной частью большого числа сплавов железа и цветных металлов. Обычно кремний придаёт сплавам повышенную устойчивость к коррозии, улучшает их литейные свойства и повышает механическую прочность; однако при большем его содержании кремний может вызвать хрупкость. Наибольшее значение имеют железные, медные и алюминиевые сплавы, содержащие кремний. Всё большее количество кремния идёт на синтез кремнийорганических соединений и силицидов. Кремнезём и многие силикаты (глины, полевые шпаты, слюды, тальки и т. д.) перерабатываются стекольной, цементной, керамической, электротехнической и др. отраслями промышленности.

Силицирование, поверхностное или объёмное насыщение материала кремнием. Производится обработкой материала в парах кремния, образующихся при высокой температуре над кремниевой засыпкой, или в газовой среде, содержащей хлорсиланы, восстанавливающиеся водородом, например, по реакции

l4 + 2H2 = Si + 4HC1.


Применяется преимущественно как средство защиты тугоплавких металлов (W, Mo, Ta, Ti и др.) от окисления. Стойкость к окислению обусловливается образованием при С. плотных диффузионных "самозалечивающихся" силицидных покрытий (WSi2, MoSi2 и др.). Широкое применение находит силицированный графит.


. Соединения


Силициды

Силициды (от лат. Silicium - кремний), химические соединения кремния с металлами и некоторыми неметаллами. Силициды по типу химической связи могут быть подразделены на три основные группы: ионно-ковалентные, ковалентные и металлоподобные. Ионно-ковалентные силициды образуются щелочными (за исключением натрия и калия) и щёлочноземельными металлами, а также металлами подгрупп меди и цинка; ковалентные - бором, углеродом, азотом, кислородом, фосфором, серой, их называют также боридами, карбидами, нитридами кремния) и т. д.; металлоподобные - переходными металлами.

Получают силициды сплавлением или спеканием порошкообразной смеси Si и соответствующего металла: нагреванием окислов металлов с Si, SiC, SiO2 и силикатами природными или синтетическими (иногда в смеси с углеродом); взаимодействием металла со смесью SiCl4 и H2; электролизом расплавов, состоящих из K2SiF6 и окисла соответствующего металла. Ковалентные и металлоподобные силициды тугоплавки, стойки к окислению, действию минеральных кислот и различных агрессивных газов. Силициды используются в составе жаропрочных металлокерамических композиционных материалов для авиационной и ракетной техники. MoSi2 служит для производства нагревателей печей сопротивления, работающих на воздухе при температуре до 1600 °С. FeSi2, Fe3Si2, Fe2Si входят в состав ферросилиция, применяемого для раскисления и легирования сталей. Карбид кремния - один из полупроводниковых материалов.

Силицированный графит

Силицированный графит, графит, насыщенный кремнием. Производится обработкой пористого графита в кремниевой засыпке при 1800-2200 °С (при этом пары кремния осаждаются в порах). Состоит из графитовой основы, карбида кремния и свободного кремния. Сочетает свойственную графиту высокую термостойкость и прочность при повышенных температурах с плотностью, газонепроницаемостью, высокой стойкостью к окислению при температурах до 1750°С и эрозионной стойкостью. Применяется для футеровки высокотемпературных печей, в устройствах для разливки металла, в нагревательных элементах, для изготовления деталей авиационной и космической техники, работающих в условиях высоких температур и эрозии

Силал

Силал (от лат. Silicium - кремний и англ. alloy - сплав), жаростойкий чугун с повышенным содержанием кремния (5-6%). Из силала изготовляют относительно дешёвые литые детали, работающие в условиях высоких температур (800-900 °С), например дверки мартеновских печей, колосники, детали паровых котлов.

Силумин

Силумин (от лат. Silicium - кремний и Aluminium - алюминий), общее название группы литейных сплавов на основе алюминия, содержащих кремний (4-13%, в некоторых марках до 23%). В зависимости от желательного сочетания технологических и эксплуатационных свойств силумин легируют Cu, Mn, Mg, иногда Zn, Ti, Be и другими металлами. Силумины обладают высокими литейными и достаточно высокими механическими свойствами, уступая, однако, по механическим свойствам литейным сплавам на основе системы Al - Cu. К достоинствам силуминов относится их повышенная коррозионная стойкость во влажной и морской атмосферах. Силумины применяются при изготовлении деталей сложной конфигурации, главным образом в авто- и авиастроении.

Силикомарганец

Силикомарганец ферросплав основные компоненты которого - кремний имарганец; выплавляется в рудно-термических печах углевосстановительным процессом. Силикомарганец с 10-26% Si (остальное Mn, Fe и примеси), получаемый из марганцевой руды, марганцевого шлака и кварцита, используется при выплавке стали как раскислитель и легирующая присадка, а также для выплавки ферромарганца с пониженным содержанием углерода силикотермическим процессом. Силикомарганец с 28-30% Si (сырьём для которого служит специально получаемый высокомарганцевый низкофосфористый шлак) применяется в производстве металлического марганца.

Силикохром

Силикохром, ферросиликохром, ферросплав, основные компоненты которого - кремний и хром; выплавляется в рудно-термической печи углевосстановительным процессом из кварцита и гранулированного передельного феррохрома или хромовой руды. Силикохром с 10-46% Si (остальное Cr, Fe и примеси) используется при выплавке низколегированной стали, а также для получения феррохрома с пониженным содержанием углерода силикотермическим процессом. Силикохром с 43-55% Si применяется в производстве безуглеродистого феррохрома и при выплавке нержавеющей стали.

Сильхром (от лат. Silicium - кремний и Chromium - хром), общее название группы жаростойких и жаропрочных сталей, легированных Cr (5-14%) и Si (1-3%). В зависимости от требуемого уровня эксплуатационных свойств сильхром дополнительно легируют Mo (до 0,9%) или Al (до 1,8%). Сильхромы устойчивы против окисления на воздухе и в содержащих серу средах до 850-950 °С; применяются главным образом для изготовления клапанов двигателей внутреннего сгорания, а также деталей котельных установок, колосников и др. При повышенных механических нагрузках детали из сильхрома надёжно работают в течение длительного срока при температурах до 600-800 °С.

Кремния галогениды

Кремния галогениды, соединения кремния с галогенами. Известны кремния галогениды следующих типов (Х-галоген): SiX4, SiHnX4-n (галогенсиланы), SinX2n+2 и смешанные галогениды, например SiClBr3 . При обычных условиях SiF4 - газ, SiCl4 и SiBr4 - жидкости (tпл - 68,8 и 5°С), SiI4 - твёрдое тело (tnл 124°С). Соединения SiX4 легко подвергаются гидролизу:


SiX4 +2H2O=SiO2 +4HX;

на воздухе дымят вследствие образования очень мелких частиц SiO2; тетрафторид кремния реагирует иначе:


SiF4 +2H2O=SiO2 +2H2SiF6


Хлорсиланы (SiHnX4-n), например SiHCl3 (получается действием газообразного HCl на Si), при действии воды образуют полимерные соединения с прочной силоксановой цепью Si-O-Si. Отличаясь большой реакционной способностью, хлорсиланы служат исходными веществами для получения кремнийорганических соединений. Соединения типа SinX2n+2, содержащие цепи атомов Si, при Х - хлор, дают ряд, включая Si6Cl14 (tnл 320°С); остальные галогены образуют только Si2X6. Получены соединения типов (SiX2)n и (SiX)n . Молекулы SiX2 и SiX существуют при высокой температуре в виде газа и при резком охлаждении (жидким азотом) образуют твёрдые полимерные вещества, нерастворимые в обычных органических растворителях.

Тетрахлорид кремния SiCl4 используется при производстве смазочных масел, электроизоляций, теплоносителей, гидрофобизирующих жидкостей и т. д. кремний силикат кварц кристалл

Карбид кремния

Кремния карбид, карборунд, SiC, соединение кремния с углеродом; один из важнейших карбидов, применяемых в технике. В чистом виде кремния карбид - бесцветный кристалл с алмазным блеском; технический продукт зелёного или сине-чёрного цвета. Карбид кремния существует в двух основных кристаллических модификациях - гексагональной (a-SiC) и кубической (b-SiC), причём гексагональная является "гигантской молекулой", построенной по принципу своеобразной структурно-направленной полимеризации простых молекул. Слои из атомов углерода и кремния в a-SiC размещены относительно друг друга по-разному, образуя много структурных типов. Переход b-SiC в a-SiC происходит при температуре 2100-2300°С (обратный переход обычно не наблюдается). Карбид кремния тугоплавок (плавится с разложением при 2830°С), имеет исключительно высокую твёрдость (микротвёрдость 33400 Мн/м² или 3,34 тс/мм²), уступая только алмазу и бора карбиду B4 C; хрупок; плотность 3,2 г/см³. Карбид кремния устойчив в различных химических средах, в том числе при высоких температурах.

Карбид кремния получают в электропечах при 2000-2200°С из смеси кварцевого песка (51-55%), кокса (35-40%) с добавкой NaCI (I-5%) и древесных опилок (5-10%). Благодаря высокой твёрдости, химической устойчивости и износостойкости карбид кремния широко применяется как абразивный материал (при шлифовании), для резания твёрдых материалов, точки инструментов, а также для изготовления различных деталей химической и металлургической аппаратуры, работающей в сложных условиях высоких температур. Карбид кремния, легированный различными примесями, используется в технике полупроводников, особенно при повышенных температурах. Интересно использование карбида кремния в электротехнике - для изготовления нагревателей высокотемпературных электропечей сопротивления (силитовые стержни), грозоразрядников для линий передачи электрического тока, нелинейных сопротивлений, в составе электроизолирующих устройств и т. д.

Кремния диоксид

Кремния диоксид (кремнезем), SiO2, кристаллы. Наиболее распространенный минерал - кварц; обычный песок - также кремния диоксид. Используют в производстве стекла, фарфора, фаянса, бетона, кирпича, керамики, как наполнитель резины, адсорбент в хроматографии, в электронике, акустооптике и др. Кремнезёма минералы, ряд минеральных видов, представляющих собой полиморфные модификации двуокиси кремния; устойчивы при определённых интервалах температуры в зависимости от давления.

Основу кристаллической структуры кремнезема составляет трёхмерный каркас, построенный из соединяющихся через общие кислороды тетраэдров (5104). Однако симметрия их расположения, плотность упаковки и взаимная ориентировка различны, что отражается на симметрии кристаллов отдельных минералов и их физических свойствах. Исключение представляет стишовит, основу структуры которого составляют октаэдры (SiO6), образующие структуру, подобную рутилу. Все кремнеземы (за исключением некоторых разновидностей кварца) обычно бесцветны. Твердость по минералогической шкале различна: от 5,5 (a-тридимит) до 8-8,5 (стишовит).

Кремнезем обычно встречаются в виде очень мелких зёрен, скрытокристаллических волокнистых (a-кристобалит, т. н. люссатит) и иногда сфероидальных образований. Реже - в виде кристалликов таблитчатого или пластинчатого облика (тридимит), октаэдрического, дипирамидального (a- и b-кристобалит), тонкоигольчатого (коэсит, стишовит). Большинство Кремнезем (кроме кварца) очень редки и в условиях поверхностных зон земной коры неустойчивы. Высокотемпературные модификации SiO2 - b-тридимит, b-кристобалит - образуются в мелких пустотах молодых эффузивных пород (дациты, базальты, липариты и др.). Низкотемпературный a-кристобалит, наряду с a-тридимитом, является одной из составных частей агатов, халцедонов, опалов; отлагается из горячих водных растворов, иногда из коллоидного SiO2. Стишовит и коэсит встречены в песчаниках метеорного кратера Каньон Дьявола в Аризоне (США), где они образовались за счёт кварца при мгновенном сверхвысоком давлении и при повышении температуры во время падения метеорита. В природе также встречаются: кварцевое стекло (т. н. лешательерит), образующееся в результате плавления кварцевого песка от удара молний, и меланофлогит - в виде мелких кубических кристалликов и корочек (псевдоморфозы, состоящие из опаловидного и халцедоновидного кварца), наросших на самородную серу в месторождениях Сицилии (Италия). Китит в природе не встречен.

Кварц (нем. Quarz), минерал; под названием кварца известны две кристаллической модификации двуокиси кремния SiO2: гексагональный кварц (или a-кварц), устойчивый при давлении в 1 атм (или 100 кн/м²) в интервале температур 870-573 °С, и тригональный (b-кварц), устойчивый при температуре ниже 573 °С. b-кварц наиболее широко встречается в природе. Он кристаллизуется в классе тригонального трапецоэдра тригональной системы. Кристаллическая структура каркасного типа построена из кремне-кислородных тетраэдров, расположенных винтообразно (с правым или левым ходом винта) по отношению к главной оси кристалла. В зависимости от этого различают правые и левые структурно-морфологические формы кристаллов, различающиеся внешне по симметрии расположения некоторых граней (например, трапецоэдра и др.). Отсутствие плоскостей и центра симметрии у кристаллов кварца обусловливает наличие пьезоэлектрических и пироэлектрических свойств.

Наиболее часто кристаллы кварца имеют удлиненно-призматический облик с преимущественным развитием граней гексагональной призмы и двух ромбоэдров (головка кристалла). Реже кристаллы принимают облик псевдогексагональной дипирамиды. Внешне правильные кристаллы кварца обычно сложно сдвойникованы, образуя наиболее часто двойниковые участки по т.н. бразильскому или дофинейскому законам. Последние возникают не только при росте кристаллов, но и в результате внутренней структурной перестройки при термических a - b переходах, сопровождаемых сжатием, а также при механических деформациях. Цвет кристаллов, зёрен, агрегатов кварца самый разнообразный: наиболее обычны бесцветные, молочно-белые или серые кварцы. Прозрачные или полупрозрачные красивоокрашенные кристаллы, называются особо: бесцветные, прозрачные - горный хрусталь; фиолетовые - аметист; дымчатые - раухтопаз; чёрные - морион; золотисто-жёлтые - цитрин. Различные окраски обычно обусловлены структурными дефектами при замене Si4+ на Fe3+ или Al3+ с одновременным вхождением в решётку Na1+, Li1+ или (ОН)1-. Встречаются также сложно окрашенные кварцы за счёт микровключений посторонних минералов: зелёный празем - включения микрокристалликов актинолита или хлорита; золотистый мерцающий авантюрин - включения слюды или гематита, и др. Скрытокристаллические разновидности кварца - агат и халцедон - состоят из тончайших волокнистых образований. Кварц оптически одноосный, положительный. Показатели преломления (для дневного света l=589,3): ne=1,553; no=1,544. Прозрачен для ультрафиолетовых и частично инфракрасных лучей. При пропускании светового плоскополяризованного луча по направлению оптической оси левые кристаллы кварца вращают плоскость поляризации влево, а правые - вправо. В видимой части спектра значение угла вращения (на толщину пластинки кварца в 1 мм) меняется от 32,7 (для l 486 нм) до 13,9° (728 нм). Значение диэлектрической проницаемости (eij), пьезоэлектрического модуля (djj) и упругих коэффицентов (Sij) следующие (при комнатной температуре): e11 = 4,58; e33 = 4,70; d11 = -6,76*10-8 ; d14 = 2,56*10-8 ; S11 = 1,279; S12 = - 0,159; S13 = -0,110; S14 = -0,446; S33 = 0,956; S44 = 1,978. Коэффиценты линейного расширения составляют: перпендикулярно оси 3-го порядка 13,4*10-6 и параллельно оси 8*10-6. Теплота превращения b - a К. равна 2,5 ккал/моль (10,45 кдж/моль). Твёрдость по минералогической шкале 7; плотность 2650 кг/м³ . Плавится при температуре 1710 °С и застывает при охлаждении в т. н. кварцевое стекло. Плавленный кварц - хороший изолятор; сопротивление кубика с ребром в 1 см при 18 °С равно 5*1018 ом/см, коэффицент линейного расширения 0,57*10-6 см/ °С. Разработана экономически выгодная технология выращивания монокристаллов синтетический К., который получают из водных растворов SiO2 при повышенных давлениях и температурах (гидротермальный синтез). Кристаллы синтетического К. обладают стабильными пьезоэлектрическими свойствами, радиационной устойчивостью, высокой оптической однородностью и др. ценными техническими свойствами.

Природный кварц- очень широко распространённый минерал, является существенной составной частью многих горных пород, а также месторождений полезных ископаемых самого разнообразного генезиса. Наиболее важные для промышленности кварцевые материалы - кварцевые пески, кварциты и кристаллический монокристальный кварц. Последний встречается редко и очень высоко ценится. Главнейшие месторождения кристаллов кварца - на Урале, на Памире, в бассейне р. Алдан; за рубежом - месторождения в Бразилии и Малагасийской Республике. Кварцевые пески - важное сырьё для керамической и стекольной промышленности. Монокристаллы кварца находят применение в радиотехнике (пьезоэлектрические стабилизаторы частоты, фильтры, резонаторы, пьезопластинки в ультразвуковых установках и т.д.); в оптическом приборостроении (призмы для спектрографов, монохроматоров, линзы для ультрафиолетовой оптики и т.д.). Плавленый кварц применяют для изготовления специальной химической посуды. К. также используется для получения химически чистого кремния. Прозрачные, красивоокрашенные разновидности кварца являются полудрагоценными камнями и широко применяются в ювелирном деле.

Кварцевое стекло, однокомпонентное силикатное стекло, получаемое плавлением природных разновидностей кремнезёма - горного хрусталя, жильного кварца и кварцевого песка, а также синтетической двуокиси кремния. Различают два вида промышленного кварцевого стекла: прозрачное (оптическое и техническое) и непрозрачное. Непрозрачность кварцевому стеклу придает большое количество распределенных в нем мелких газовых пузырьков (диаметром от 0,03 до 0,3 мкм), рассеивающих свет. Оптическое прозрачное кварцевое стекло, получаемое плавлением горного хрусталя, совершенно однородно, не содержит видимых газовых пузырьков; обладает наименьшим среди силикатных стекол показателем преломления (nD = 1,4584) и наибольшим свето-пропусканием, особенно для ультрафиолетовых лучей. Для кварцевого стекла характерна высокая термическая и химическая стойкость; температура размягчения К. с. 1400 °С. Кварцевое стекло хороший диэлектрик, удельная электрическая проводимость при 20 °С-10-14 - 10-16 ом-1 м-1, тангенс угла диэлектрических потерь при температуре 20 °С и частоте 106 гц - 0,0025-0,0006. Кварцевое стекло применяют для изготовления лабораторной посуды, тиглей, оптических приборов, изоляторов (особенно для высоких температур), изделий, стойких к температурным колебаниям.

Силаны

Силаны (от лат. Silicium - кремний), соединения кремния с водородом общей формулы SinH2n+2. Получены силаны вплоть до октасилана Si8H18. При комнатной температуре первые два соединения кремния - моносилан SiH4 и дисилан Si2H6 - газообразны, остальные - летучие жидкости. Все соединения кремния имеют неприятный запах, ядовиты. Силаны гораздо менее устойчивы, чем алканы, на воздухе самовоспламеняются, например


Si2H6 +7O2 =4SiO2 +6H2O.


Водой разлагаются:

3H8 +6H2O=3SiO2 +10H2


В природе силаны не встречаются. В лаборатории действием разбавленных кислот на силицид магния получают смесь различных К., её сильно охлаждают и разделяют (путём дробной перегонки при полном отсутствии воздуха).

Кремниевые кислоты

Кремниевые кислоты, производные кремниевого ангидрида SiO2; очень слабые кислоты, малорастворимые в воде. В чистом виде были получены метакремниевая кислота H2SiO3 (точнее её полимерная форма H8Si4O12) и H2Si2O5. Аморфная двуокись кремния (аморфный кремнезём) в водном растворе (растворимость около 100 мг в 1 л) образует преимущественно ортокремниевую кислоту H4SiO4. В полученных разными способами пересыщенных растворах кремниевые кислоты изменяются с формированием коллоидных частиц (молярная масса до 1500), на поверхности которых находятся группы OH. Образованный т. о. золь в зависимости от водородного показателя pH может быть устойчивым (pH около 2) или может агрегировать, переходя в гель (pH 5-6). Устойчивые высококонцентрированные золи кремниевые кислоты, содержащие специальные вещества - стабилизаторы, применяют при производстве бумаги, в текстильной промышленности, для очистки воды. Кремнефтористоводородная кислота, H2SiF6, сильная неорганическая кислота. Существует лишь в водном растворе; в свободном виде распадается на тетрафторид кремния SiF4 и фтористый водород HF. Применяется как сильно дезинфицирующее средство, но главным образом - для получения солей кремниевых кислот - кремнефторидов.

Силикаты

Силикаты, соли кислот кремния. Наиболее широко распространены в земной коре (80% по массе); известно более 500 минералов, среди них - драгоценные камни, например изумруд, берилл, аквамарин. Силикаты - основа цементов, керамики, эмалей, силикатного стекла; сырье в производстве многих металлов, клеев, красок и др.; материалы радиоэлектроники и т.д. Кремнефториды, фторсиликаты, соли кремнефтористоводородной кислоты H2SiF6 . При нагревании распадаются, например

6 = CaF2 + SiF4


Соли Na, К, Rb, Cs и Ba трудно растворимы в воде и образуют характерные кристаллы, что используется в количественном и микрохимическом анализе. Наибольшее практическое значение имеет кремнефторид натрия Na2SiF6 (в частности, в производстве кислотоупорных цементов, эмалей и т.д.). Значительную долю Na2SiF6 перерабатывают на NaF. Получают Na2SiF6 из содержащих SiF4 отходов суперфосфатных заводов. Хорошо растворимые в воде кремнефториды Mg, Zn и Al (техническое название флюаты) применяют для придания водонепроницаемости строительному камню. Все силикаты (а также H2SiF6) ядовиты.


Приложение


Рис.1 Правый и левый кварц.


Рис.2 Кремнезёма минералы.


Рис.3 Кварц (структура)


Силиконовый минерал кремний разновидность кремнезёма - черный, темно-серый или светлый - довольно часто встречается в природе, и человек хорошо знаком с ним. Но о целебных свойствах кремния стало известно совсем недавно: в конце 70-х годов XX века. Хотя человечество познакомилось с кремнием очень давно.
Кремень - камень, положивший начало человеческой цивилизации. На всём протяжении каменного века кремень служил материалом для изготовления орудий труда и охоты, с его помощью добывали огонь. О целебных свойствах кремня упоминается в трактатах древних философов. Его использовали для срезания бородавок, для отделки стен в помещениях, где хранилось мясо, для присыпки ран в виде порошка, что предотвращало гангрену, кремниевые жернова на мельницах позволяли получать муку с отменными хлебопекарными и вкусовыми качествами. Издавна кремнием выкладывали дно и внутреннюю поверхность колодцев, так как было замечено, что люди, употреблявшие воду из таких колодцев, меньше болеют, и такая вода необыкновенно прозрачная, вкусная и целебная.

В природе кремний встречается в виде широко распространенных минералов - кварца, халцедона, опала и др. В группу этих минералов входят и сердолик , и яшмы , горный хрусталь , агат , опал , аметист и многие другие камни. Основа этих минералов - диоксид кремния или кремнезём, а вот плотность, цвет, некоторые другие свойства - разные. В состав кремней, кроме кремнезёма, входят около 20 химических элементов, основные из которых - Mg, Ca, P, Sr, Mn, Cu, Zn и др. Отсюда и столько названий. Но самый известный среди представителей этого семейства, бесспорно, кремень. Большая часть земной коры состоит из неорганических соединений кремния (28 об.%).

Кремний (Silicium - лат.) химический элемент, атомный номер 14, IV группа периодической системы. Атомы кремния составляют основу глины, песка и скал. Можно сказать, что весь неорганический мир связан с кремнием. В природных условиях кремниевые минералы находятся в кальцитах и меле.

Кремний является вторым после кислорода по объему запасов в земной коре элементом и составляет около трети всего ее веса. Каждый 6 атом в коре земной оболочки - атом кремния. В морской воде кремния содержится даже больше чем фосфора, столь необходимого для жизни на Земле.

В нашем организме кремний содержится в щитовидной железе, надпочечниках, гипофизе. Самая высокая концентрация его обнаружена в волосах и ногтях.

Кремний также входит в состав коллагена - основного белка соединительной ткани. Основная его роль - участие в химической реакции, скрепляющие отдельные волокна коллагена и эластина, придавая соединительной ткани прочность и упругость. Кремний также входит в состав коллагена волос и ногтей, играет важную роль в срастании костей при переломах.

Особая роль у кремния в жизни и здоровье людей, а также растительного и животного мира. Кремний поглощается растениями в виде растворенных кремниевых кислот, силикатов и коллоидного кремнезема. Отсутствие кремния неблагоприятно влияет на всхожесть, рост и урожайность зерновых, в основном, риса, а также сахарного тростника, подсолнечника, таких культур, как картофель, свекла, морковь, огурцы и томаты. С овощами, фруктами, молоком, мясом и другими продуктами человек ежедневно должен потреблять 10-20 мг кремния. Это количество необходимо для нормальной жизнедеятельности, роста и развития организма.

Научные исследования о роли кремния для здоровья людей освещены в монографиях В. Кривенко и др. "Литотерапия", М., 1994, Э. Михеевой "Целительские свойства кремния", С-П, 2002, трудах М. Воронкова и И. Кузнецова (АН СССР, Сиб. отд., 1984), А. Паничева, Л. Зардашвили, Н. Семеновой и др. Показано, что кремний участвует в обмене фтора, магния, алюминия, и других минеральных соединений, но особенно тесно взаимодействует со стронцием и кальцием. Один из механизмов воздействия кремния состоит в том, что благодаря своим химическим свойствам он создает электрические заряженные коллоидные системы, которые обладают свойством адсорбировать вирусы и болезнетворные микроорганизмы, несвойственные человеку.

Некоторые растения способны концентрировать кремний. Это топинамбур , редис , олив а, смородина , полевой хвощ и др. Много кремния накапливается в зерновых культурах, особенно в семенной оболочке (отрубях): рисе, овсе, просе, ячмене, сое. При размоле зерен на мельнице их освобождают от оболочки, чем лишают кремния и этим обесценивают.
Богаты кремнием и минеральные воды. А вот рафинированный сахар практически лишен кремния. Только неочищенный желтый сахар имеет кремний и поэтому представляет большую ценность.

Высоким содержанием кремния отличаются хвощи - широко распространенные растения отечественной флоры, применяемые все чаще в последнее время в народной медицине. В этом отношении хорошо зарекомендовали себя масляный экстракт лопуха, экстракт хвоща, органические соединения кремния (керамиды), входящие в состав лекарства под названием масло репейное с экстрактом хвоща (с керамидами). Специальные исследования показали, что это лекарство:

  • питает и укрепляет волосы, восстанавливая их структуру, защищает кончики волос от расщепления;
  • стимулирует рост волос (в том числе при выпадении волос после курса химиотерапии);
  • значительно уменьшает выпадение волос;
  • избавляет от перхоти.


Рекомендации по применению : при нарушении структуры волос, обусловленном внешними или внутренними факторами, а также при истончении и тусклом внешнем виде волос.

Способ применения : теплое масло нанести на волосы и кожу головы, мягко и тщательно втирать не менее 15 минут (при этом избегать резких и интенсивных движений, так как при этом ломаются и выдергиваются волосы), затем равномерно распределить масло по всей длине волос. Аппликацию проводить в течение 1 часа, после чего смыть мягким шампунем.

Также кремний отвечает за обеспечение защитных функций, процессов обмена веществ и дезинтоксикации. Он работает как биологический «сшивающий» агент, участвующий в образовании молекулярной «архитектуры» полисахаридов и их комплексов с белками, придает эластичность соединительным тканям, входит в состав эластина кровеносных сосудов, придает прочность, эластичность и непроницаемость их стенкам и препятствует проникновению липидов в плазму крови.

Исследования показали, что в воде кремний подавляет бактерии, вызывающие брожение и гниение, осаждает тяжелые металлы, нейтрализует хлор, сорбирует радионуклиды. В живом организме биологически активные вещества кремния вместе с белковыми структурами способствуют образованию ферментов, аминокислот, гормонов. Кремний особенно необходим в соединительной ткани, он содержится в щитовидной железе, надпочечниках, гипофизе. Много кремния в волосах. Самая высокая концентрация его обнаружена в волосах и ногтях.

Кремний:

  • укрепляет иммунную систему и входит в состав различных лекарственных и косметических препаратов;
  • cпециалисты по косметике обнаружили, что продукты на основе кремния очень полезны для волос, кожи и ногтей;
  • около 70 элементов не усваиваются, если в организме не хватает кремния. Он необходим для усвоения кальция, хлора, фтора, натрия, серы, алюминия, цинка, молибдена, марганца, кобальта и других элементов;
  • кремний способствует биосинтезу коллагена, участвует в метаболизме фосфора и в липидном обмене, а также в поддержании своего равновесия с кальцием, которое тесно связано с процессами старения организма.

Нехватка кремния в организме приводит к:

  • остеомаляции (размягчению костей);
  • заболеваниям глаз, зубов, ногтей, кожи и волос;
  • ускоренной изношенности суставных хрящей;
  • рожистым воспалениям кожи;
  • камням в печени и почках;
  • дисбактериозам;
  • атеросклерозу

Обнаружена зависимость между концентрацией кремния в питьевой воде и сердечнососудистыми заболеваниями. Туберкулез, диабет, проказа, гепатит, гипертония, катаракта, артриты, рак сопровождаются понижением концентрации кремния в тканях и органах, либо нарушениями его обмена.

Между тем наш организм ежедневно теряет кремний - в среднем в сутки с пищей и водой мы потребляем 3,5 мг кремния, а теряем около 9 мг!

Причины дефицита кремния в организме:

  • недостаточное потребление клетчатки, и минеральной воды;
  • избыток алюминия (например, вследствие приготовления пищи в алюминиевой посуде);
  • период интенсивного роста у детей;
  • физические перегрузки

Обычно снижение содержания кремния происходит на фоне общей минеральной недостаточности и сопровождается дефицитом магния и кальция.

Признаки дефицита кремния :

  • нарушение состояния соединительной ткани - болезни костей, связок, развитие остеопороза, пародонтоза, артрозы;
  • поражение сосудов - ранний атеросклероз, повышение уровня холестерина;
  • сухая ранимая кожа;
  • ломкость и замедленный рост ногтей;
  • снижение сопротивляемости организма к инфекциям, болезни легких, верхних дыхательных путей

Известно, что биологический возраст человека определяется скоростью протекания обменных процессов, т.е. скоростью обновления как отдельных клеток. И если проблему увлажнения и защиты в той или иной степени способны решать многие косметические препараты, то проблема ускорения обмена веществ требует более интенсивной смены внешнего слоя кожи.

Замедление процессов регенерации кожи начинается приблизительно с 30 лет. К этому времени организм уже начинает ощущать недостаток кремния. Самостоятельно восстановить дефицит кремния наш организм не может, поскольку окружающие нас природные соединения кремния в большинстве своём биологически неактивны и не способны участвовать в биохимических реакциях внутри клетки.

Кремний - прекрасное косметическое средство. Оно очищает кожу от гнойничковых образований. Особенно полезно умываться кремниевой водой, а также принимать ее внутрь при юношеских прыщах. В процессе исследований учёными был создан новый класс органических соединений кремния, способных ускорять обменные процессы в коже и, участвуя в синтезе белков соединительной ткани эластина и коллагена, повышать упругость кожи и ликвидировать образовавшиеся морщины.

Запатентованные компанией WGN кремнийсодержащие соединения ускоряют обменные процессы в клетках, регенерируют эластиновые и коллагеновые волокна. Результаты создания активных соединений нанокремния легли в основу разработки линии так называемых «нанокремниевых» косметических препаратов NewAge.

Биоактивный нанокремний проникает в глубокие слои кожи, очищает их и обеспечивает защиту, сохраняющую естественную проницаемость и дыхательную способность кожи. Нонокремний, стимулируя процессы пролиферации и регенерации, ускоряет обновление эпидермиса и восстанавливает функции клеток дермы - фибробластов.

Достоинствами кремниевой косметики являются дерматологическая совместимость компонентов; возможность использования для любого типа кожи, включая чувствительную; высокая эффективность действия, мягкая стимуляция естественных биохимических механизмов функционального состояния кожи.

При взаимодействии с водой кремень изменяет её свойства. Активированная кремнем вода действует губительно на микроорганизмы, подавляет бактерии, вызывающие гниение и брожение, в ней происходит активное осаждение соединений тяжёлых металлов, вода становится чистой на вид и приятной на вкус, она долгое время не портится и приобретает многие другие целебные качества.

Кремень относится к минералам семейства кварцев или халцедонов. В группу этих минералов входят и сердолик, и яшмы, горный хрусталь, агат, опал, аметист и многие другие камни. Основа этих минералов - диоксид кремния SiO2 или кремнезём, а вот плотность, цвет, некоторые другие свойства - разные. В состав кремней, кроме кремнезёма, входят около 20 химических элементов, основные из которых - Mg, Ca, P, Sr, Mn, Cu, Zn и др. Отсюда и столько названий. Но самый известный среди представителей этого семейства, бесспорно, кремень.

Причины и механизм взаимодействия кремня с водой не выяснен окончательно. Возможно, целительное действие кремния объясняется способностью его образовывать с водой особые ассоциаты - коллоиды, поглощающие из среды грязь и постороннюю микрофлору.

Говоря о полезных для организма свойствах кремния мы в первую очередь вспоминаем воду. В человеческом организме около 70% воды, и поэтому трудно представить жизнь без неё. А если учесть, что все виды обмена веществ осуществляются через водную среду, что именно вода является проводником преобладающего большинства физиологических жизненные процессы, что без неё невозможна ни одна форма жизни - углеродная, кремниевая или любая другая, то становится ясно, что активированная кремнем вода приобретает особенное значение.

«...в системе кремень - водные растворы неорганических солей происходит интенсивное оседание ряда металлов: алюминия, железа, кадмия, цезия, цинка, свинца, стронция.» - П. Аладовский, руководитель лаборатории Центрального НИИ использования водных ресурсов, д.х.н. Другими словами, кремень вытесняет из воды вредные металлы, очищая её. Они остаются на дне, а сверху оказывается чистая вода.

«Вода, обработанная кремнем оказывает влияние на адсорбционную способность радионуклидов. Это, возможно, позволит использовать её для решения некоторых радиохимических задач на загрязнённой радионуклидами территории Беларусии.» - д.х.н. Ю. Давыдов - руководитель лаборатории Института радиологических проблем Национальной академии наук Республики Беларусь.

«Кремниевая вода, начиная с пятого дня хранения, обладает способностью укреплять гемостатические возможности крови, увеличивает её способность к свёртыванию». Е. Иванов - директор Института гематологии и переливания крови Министерства здравоохранения Республики Беларусь, д.м.н. На память сразу приходит гемофилия - болезнь, при которой кровь сворачивается плохо. А это значит, что человек, получивший даже маленькую царапину, может умереть от потери крови.

«На протяжении нескольких лет мной не наблюдалось раковых заболеваний у множества больных, которые употребляли активированную кремнем воду (АКБ). Нами установлено, что на 5-6 день приёма АКБ (6-8 раз в сутки) у больных с многочисленными трофическими язвами нижних конечностей увеличивается количество Т- и В-лимфоцитов. А это свидетельствует о способности возобновлять утраченный и ослабленный иммунитет. Кроме того, АКБ снижает количество холестерина в крови, особенно при ожирении. Таким образом, АКБ служит для профилактики атеросклероза» - М. Синявский профессор кафедры медицинской подготовки Могилёвского государственного университета им. А.А. Кулешова.

Что же это такое - кремниевая вода ? Кремниевая вода - это настойка на тёмно-коричневом кремне, которую применяют внутрь и наружно. Методика приготовления кремневой воды достаточно простая. В 2-3 литровую емкость, желательно, стеклянную, вносят 40-50 г мелких камешков кремня желательно интенсивно-ярко-коричневого (но не чёрного) цвета, вливают воду из водопроводной сети, но лучше после обычного фильтрования, и ставят её в защищенное от прямых солнечных лучей место и вне земных патогенных излучений.

Такая вода для питья будет готова через 2-3 суток. При соблюдении этой же технологии, но если завязать горловину 2-3 слоями марли и поставить воду на светлое место при температуре выше 5оС на 5-7 дней, то эта вода по своим свойствам может использоваться не только в качестве питьевой, но и для лечебно-профилактических целей. Её полезно употреблять для приготовления пищи - чая, супов и т.п. Пить кремениевую воду можно без ограничений (в норме 1,5-2 л в день). Если нет возможности, то хотя бы 3-5 раз в день по полстакана и всегда маленькими глотками и желательно в прохладном виде.

Применять кремень, как уже упоминалось, только ярко-коричневого (не черного) цвета.

Использовать нужно только природные минералы. Дело в том, что в кремне содержатся остатки микроорганизмов, которые в свое время из ила мелового и более древних эпох сформировался кремень.

После одно- двукратного использования камень нужно промыть прохладной водой и 2 часа проветривать на свежем воздухе. При появлении на поверхности камешков наслоений или налетов необходимо их погрузить в 2% раствор уксусной кислоты или подсоленную воду на 2 часа; затем сполоснуть 2-3 раза обычной водой и опустить на 2 часа в раствор питьевой соды и снова сполоснуть.

Специфические свойства кремниевой воды позволяют заниматься профилактикой многих заболеваний. Кремниевая вода положительно влияет на общее состояние организма в целом.

Если вы пьёте активированную кремнем воду или готовите на ней пищу происходит:

- укрепление иммунной системы, увеличивается количество Т- и В- лимфоцитов крови;

Улучшается состояние людей, страдающих заболеваниями печени, т.к. вода помогает оттоку желчи;

Быстрое заживление ожогов, порезов, ушибов, трофических язв;

Помогает при расстройстве желудка, снимает воспалительные процессы в ЖКТ и при гастрите;

Снижение уровня сахара в крови, а также веса, предрасположенных к полноте диабетиков;

Снижение уровня холестерина в крови, особенно при ожирении, профилактика - атеросклероза и улучшение работы почек;

Нормализует состояние больных, страдающих гипертонией;

Нормализует обмен веществ;

Повышается общий тонус.

При наружном применении кремниевая вода стимулирует процессы восстановления организма при:

- лечении ангины, насморка, воспаления дёсен (полоскания горла и рта после еды);

При вирусных заболеваниях полости рта, стоматитах и гингивитах;

Лечении аллергии, фурункулов, диатеза, дерматита, различных кожных раздражений (примочки и умывание);

При конъюктивите снимает зуд и воспаление;

Умывание такой водой способствует улучшению состояния кожи, уменьшению количества морщин и предотвращение появления новых, способствует устранению неровностей, угрей, прыщей;

Ополаскивание головы и волос, втирание в кожу головы способствует укреплению и росту волос;

При некоторых заболеваниях кожи (простой пузырьковый, опоясывающий и розовый лишай).

- При выпадающих и "секущихся" волосах промывать голову "кремневой" водой;

Для снятия раздражения после бритья, ополаскивать лицо такой же водой;

При "юношеских прыщах" умываться и применять внутрь "воду";

Кусочками льда протирать кожу лица, замороженной "кремневой" водой;

Для профилактики парадантоза ополаскивать дёсны "водой" при чистке зубов.

Применение в лечебно-профилактических целях "кременевой" воды способствует быстрому заживлению ран, предотвращению образования опухолей при регулярном приеме воды, улучшению состава крови, восстановлению функции надпочечников, снятию воспалительных процессов в желудочно-кишечном тракте и при гастритах, нормализации содержания сахара в крови, снижению веса, излечиванию при переломах (кости срастаются быстрее и без осложнений), улучшению работы почек и обмену веществ, отделению и выводу желчи. Кремниевая вода убивает вирусы; для профилактики в период респираторных эпидемий рекомендуется "воду" закапывать в нос. Это помогает при бессоннице.

В домашнем хозяйстве рекомендуется поливать цветы, что удлиняет срок цветения; ускоряет срок плодоношения фруктовых деревьев и овощных культур; повышает урожайность на 10%. Убивает плесень, серую гниль, в частности на клубнике, и другие грибки. Замачивание семян в такой воде повышает всхожесть. Цветы лучше хранить в ёмкости, где находятся кремниевые камешки, срок их хранения резко возрастает. В аквариуме кремень предотвращает цветение воды. Помогает кремний и очищать воду в походе, что важно знать туристам.

Кремниевую воду также полезно пить при атеросклерозе (сосуды очищаются от склеротических отложений), различного рода нарушения обмена веществ, ангине, гриппе, фарингите (полоскание кремниевой водой заметно снижает длительность этих заболеваний - ведь кремний здесь действует как антибиотик), ревматизм, болезнь Боткина (кремний убивает патогенные вирусы), болезни зубов и суставов (ибо кремний восстанавливает целостность костных тканей).

И теперь самый важный момент - противопоказания. Кремниевая вода имеет противопоказания, и обращаться с ней нужно очень осторожно. Врачи заметили, что тем, кто имеет предрасположенность к онкологическим заболеваниям, лучше совсем от нее отказаться.

Кремний - один из самых распространенных в земной коре элементов. Он составляет (масс.) доступной нашему исследованию части земной коры, занимая по распространенности второе место после кислорода. В природе кремний встречается только в в виде диоксида (двуокиси) кремния , называемого также кремниевым ангидридом или кремнеземом, и в виде солей кремниевых кислот (силикатов), Наиболее широко распространены в природе алюмосиликаты, т. е. силикаты, в состав которых входиф, алюминий, К ним относятся полевые шпаты, слюды, каолин и др.

Как углерод, входя в состав всех органических веществ, является важнейшим элементом растительного и животного царства, Так кремний - главный элемент в царстве минералов и горных пород.

В большинстве организмов содержание кремния очень невелико. Однако некоторые морские организмы накапливают большие количества кремния. К богатым им морским растениям относятся диатомовые водоросли, из животных много кремния содержат радиолярии, кремниевые губки.

Свободный кремний можно получить прокаливанием с магнием мелкого белого песка, который представляет собой диоксид кремния:

При этом образуется бурый порошок аморфного кремния.

Кремний растворим в расплавленных металлах. При медленном охлаждении раствора кремния в цинке или в алюминии кремний выделяется в виде хорошо образованных кристаллов октаэдрической формы. Кристаллический кремний обладает стальным блеском.

Кристаллы кремния высокой чистоты, имеющие минимальное число дефектов структуры, характеризуются очень низкой электрической проводимостью. Примеси и нарушения правильности строения резко увеличивают их проводимость.

Кремний применяется главным образом в металлургии и в полупроводниковой технике. В металлургии он используется для удаления кислорода из расплавленных металлов и служит составной частью многих сплавов. Важнейшие из них - это сплавы на основе железа, меди и алюминия. В полупроводниковой технике кремний используют для изготовления фотоэлементов, усилителей, выпрямителей. Полупроводниковые приборы на основе кремния выдерживают нагрев до , что расширяет область их применения.

В промышленности кремний получают восстановлением диоксида кремния коксом в электрических печах:

Полученный по этому способу кремний содержит примесей. Необходимый для изготовления полупроводниковых приборов кремний высокой чистоты получают более сложным путем. Природный кремнезем переводят в такое соединение кремния, которое поддается глубокой очистке. Затем кремний выделяют из полученного чистого вещества термическим разложением или действием восстановителя. Один из таких методов состоит в превращении кремнезема в хлорид кремния , очистке этого продукта и восстановлении из него кремния высокочистым цинком, Весьма чистый кремний можно получить также термическим разложением иодида кремния или силана .

Получающийся кремний содержит весьма мало примесей и пригоден для изготовления некоторых полупроводниковых приборов. Для получения еще более чистого продукта его подвергают дополнительной очистке, например зонной плавке (см. § 193).

В химическом отношении кремний, особенно кристаллический, малоактивен; при комнатной температуре он непосредственно соединяется только с фтором. При нагревании аморфный кремний легко соединяется с кислородом, галогенами и серой.

Кислоты, кроме смеси фтороводорода и азотной кислоты, не действуют на кремний, но щелочи энергично реагируют с ним, выделяя водород и образуя соли кремниевой кислоты :

В присутствии следов щелочи, играющей роль катализатора, кремний вытесняет водород также из воды.

Если накаливать в электрической печи смесь песка и кокса, взятых в определенном соотношении, то получается соединение кремния с углеродом - карбид кремния , называемый карборундом:

Чистый карборунд - бесцветные очень твердые кристаллы (плотность 3,2 ). Технический продукт обычно окрашен примесями в темно-серый цвет.

По внутреннему строению карборунд представляет собой как бы алмаз, в котором половина атомов углерода равномерно заменена атомами кремния. Каждый атом углерода находится в центре тетраэдра, в вершинах которого расположены атомы кремния; в свою очередь каждый атом кремния окружен подобным же образом четырьмя атомами углерода. Ковалентные связи, соединяющие все атомы в этой структуре, как и в алмазе, очень прочны. Этим объясняется большая твердость карборунда.

Карборунд получают в больших количествах; применение его разнообразно и связано с его высокой твердостью и огнеупорностью. Из порошка карборунда изготовляют шлифовальные круги, бруски, шлифовальную бумагу. На его основе производят плиты для сооружения полов, платформ и переходов в метро и на вокзалах. Из него готовят муфели и футеровку для различных печей. Смесь порошков карборунда и кремния служит материалом для изготовления силитовых стержней для электрических печей.

При высокой температуре кремний вступает в соединение со многими металлами, образуя силициды. Например, при нагревании диоксида кремния с избытком металлического магния восстанавливающийся кремний соединяется с магнием, образуя силицид магния .