Агрегатное состояние вещества физика. Что такое агрегатное состояние вещества

ОПРЕДЕЛЕНИЕ

Вещество - это совокупность большого количества частиц (атомов, молекул или ионов).

Вещества имеют сложное строение. Частицы в веществе взаимодействуют между собой. Характер взаимодействия частиц в веществе определяет его агрегатное состояние.

Виды агрегатных состояний

Выделяют следующие агрегатные состояния: твердое, жидкое, газ, плазма.

В твердом состоянии частицы, как правило, объединены в правильную геометрическую структуру. Энергия связей частиц больше, чем энергия их тепловых колебаний.

Если температуру тела увеличивать, увеличивается энергия тепловых колебаний частиц. При некоторой температуре энергия тепловых колебаний становится больше, чем энергия связей. При такой температуре связи между частицами разрушаются и образуются снова. При этом частицы совершают различные виды движений (колебания, вращения, перемещения друг относительно друга и т.д.). При этом они еще контактируют между собой. Правильная геометрическая структура нарушена. Вещество находится в жидком состоянии.

При дальнейшем росте температуры тепловые колебания усиливаются, связи между частицами становятся еще слабее и практически отсутствуют. Вещество находится в газообразном состоянии. Самой простой моделью вещества является идеальный газ, в котором считается, что частицы движутся в любых направлениях свободно, взаимодействуют между собой только в момент соударений, при этом выполняются законы упругого удара.

Можно сделать вывод о том, что с ростом температуры вещество переходит от упорядоченной структуры в неупорядоченное состояние.

Плазма - это газообразное вещество, состоящее из смеси нейтральных частиц ионов и электронов.

Температура и давление в разных агрегатных состояниях вещества

Разные агрегатные состояния вещества определяют: температура и давление. Низкое давление и высокая температура соответствуют газам. При низких температурах, обычно вещество находится в твердом состоянии. Промежуточные температуры относят к веществам в жидком состоянии. Для характеристики агрегатных состояний вещества часто применяется фазовая диаграмма. Это диаграмма, отражающая зависимость агрегатного состояния от давления и температуры.

Основной особенностью газов является их способность к расширению и сжимаемость. Газы не обладают формой, принимают форму сосуда, в который помещены. Объем газа определяет объем сосуда. Газы могут смешиваться между собой в любых пропорциях.

Жидкость не имеет формы, но имеют объем. Сжимаются жидкости плохо, только при высоком давлении.

Твердые вещества имеют форму и объем. В твердом состоянии могут находиться соединения с металлическими, ионными и ковалентными связями.

Примеры решения задач

ПРИМЕР 1

Задание Изобразите фазовую диаграмму состояний для некоего абстрактного вещества. Объясните ее смысл.
Решение Сделаем рисунок.

Диаграмма состояния приведена на рис.1. Она состоит из трех областей, которые соответствуют кристаллическому (твердому) состоянию вещества, жидкости и газообразному состоянию. Данные области разделяются кривыми, которые обозначают границы взаимно обратных процессов:

01 - плавление - кристаллизация;

02 - кипение - конденсация;

03 - сублимация - десублимация.

Точка пересечения всех кривых (О) - тройная точка. В этой точке вещество может существовать в трёх агрегатных состояниях. Если температура вещества выше критической () (точка 2), то кинетическая энергия частиц больше потенциальной энергии их взаимодействия, при таких температурах вещество становится газом при всяком давлении. Из фазовой диаграммы видно, что если давление больше, чем , то при увеличении температуры твердое тело плавится. После расплавления, рост давления ведет к увеличению температуры кипения. Если давление меньше, чем , то увеличение температуры твердого тела ведет к его переходу непосредственно в газообразное состояние (сублимация) (точка G).

ПРИМЕР 2

Задание Объясните, что отличает одно агрегатное состояние от другого?
Решение В различных агрегатных состояниях атомы (молекулы) имеют разные расположения. Так атомы (молекулы или ионы) кристаллических решеток расположены упорядоченно, могут совершать небольшие колебания около положений равновесия. Молекулы же газов находятся в неупорядоченном состоянии и могут перемещаться на значительные расстояния. Кроме того, внутренняя энергия веществ в разных агрегатных состояниях (для одинаковых масс вещества) при разных температурах различна. Процессы перехода из одного агрегатного состояния в другое сопровождаются изменением внутренней энергии. Переход: твердое вещество - жидкость - газ, означает увеличение внутренней энергии, так как происходит увеличение кинетической энергии движения молекул.

В повседневной практике приходится иметь дело не отдельно с индивидуальными атомами, молекулами и ионами, а с реальными веществами — совокупностью большого количества частиц. В зависимости от характера их взаимодействия различают четыре вида агрегатного состояния: твердое, жидкое, газообразное и плазменное. Вещество может превращаться из одного агрегатного состояния в другое в результате соответствующего фазового перехода.

Пребывание вещества в том или ином агрегатном состоянии обусловлено силами, действующими между частицами, расстоянием между ними и особенностями их движения. Каждое агрегатное состояние характеризуется совокупностью определенных свойств.

Свойства веществ в зависимости от агрегатного состояния:

состояние свойство
газообразное
  1. Способность занимать весь объем и принимать форму сосуда;
  2. Сжимаемость;
  3. Быстрая диффузия в результате хаотического движения молекул;
  4. Значительное превышение кинетической энергии частиц над потенциальной, Е кинетич. > Е потенц.
жидкое
  1. Способность принимать форму той части сосуда, которую занимает вещество;
  2. Невозможность расширяться до заполнения всей емкости;
  3. Небольшая сжимаемость;
  4. Медленная диффузия;
  5. Текучесть;
  6. Соизмеримость потенциальной и кинетической энергии частиц, Е кинетич. ≈ Е потенц.
твердое
  1. Способность сохранять собственные форму и объем;
  2. Очень незначительная сжимаемость (под большим давлением)
  3. Очень медленная диффузия за счет колебательного движения частиц;
  4. Отсутствие текучести;
  5. Значительное превышение потенциальной энергии частиц над кинетической, Е кинетич. <Е потенц.

В соответствии со степенью упорядоченности в системе для каждого агрегатного состояния характерно собственное соотношение между кинетической и потенциальной энергиями частиц. В твердых телах потенциальная преобладает над кинетической, так как частицы занимают определенные положения и только колеблются вокруг них. Для газов наблюдается обратное соотношение между потенциальной и кинетической энергиями, как следствие того, что молекулы газа всегда хаотично движутся, а силы сцепления между ними почти отсутствуют, поэтому газ занимает весь объем. В случае жидкостей кинетическая и потенциальная энергии частиц примерно одинаковы, между частицами действует нежесткая связь, поэтому жидкостям присущи текучесть и постоянный при данной объем.

Когда частицы вещества образуют правильную геометрическую структуру, а энергия связей между ними больше энергии тепловых колебаний, что предотвращает разрушение сложившейся структуры — значит, вещество находится в твердом состоянии. Но начиная с некоторой температуры, энергия тепловых колебаний превышает энергию связей между частицами. При этом частицы, хотя и остаются в контакте, перемещаются друг относительно друга. В результате геометрическая структура нарушается и вещество переходит в жидкое состояние. Если тепловые колебания настолько возрастают, что между частицами практически теряется связь, вещество приобретает газообразное состояние. В «идеальном» газе частицы свободно перемещаются во всех направлениях.

При повышении температуры вещество переходит из упорядоченного состояния (твердое) в неупорядоченный состояние (газообразное) жидкое состояние является промежуточным по упорядоченности частиц.

Четвертым агрегатным состоянием называют плазму — газ, состоящий из смеси нейтральных и ионизированных частиц и электронов. Плазма образуется при сверхвысоких температурах (10 5 -10 7 0 С) за счет значительной энергии столкновения частиц, которые имеют максимальную неупорядоченность движения. Обязательным признаком плазмы, как и других состояний вещества, является ее электронейтральность. Но в результате неупорядоченности движения частиц в плазме могут возникать отдельные заряженные микрозоны, благодаря чему она становится источником электромагнитного излучения. В плазменном состоянии существует вещество на , звездах, других космических объектах, а также при термоядерных процессах.

Каждое агрегатное состояние определяется, прежде всего, интервалом температур и давлений, поэтому для наглядной количественной характеристики используют фазовую диаграмму вещества, которая показывает зависимость агрегатного состояния от давления и температуры.

Диаграмма состояния вещества с кривыми фазовых переходов: 1 — плавления-кристаллизации, 2 — кипения-конденсации, 3 — сублимации-десублимации

Диаграмма состояния состоит из трех основных областей, которые соответствуют кристаллическому, жидкому и газообразному состояниям. Отдельные области разделяются кривыми, отражающие фазовые переходы:

  1. твердого состояния в жидкое и, наоборот, жидкого в твердое (кривая плавления-кристаллизации — пунктирный зеленый график)
  2. жидкого в газообразное и обратного преобразования газа в жидкость (кривая кипения-конденсации — синий график)
  3. твердого состояния в газообразное и газообразного в твердое (кривая сублимации-десублимации — красный график).

Координаты пересечения этих кривых называются тройной точкой, в которой в условиях определенного давления Р=Р в и определенной температуры Т=T в вещество может сосуществовать сразу в трех агрегатных состояниях, причем жидкое и твердое состояние имеют одинаковое давление пара. Координаты Р в и Т в — это единственные значения давления и температуры, при которых могут одновременно сосуществовать все три фазы.

Точке К на фазовой диаграмме состояния отвечает температура Т к — так называемая критическая температура, при которой кинетическая энергия частиц превышает энергию их взаимодействия и поэтому стирается грань разделения между жидкой и газовой фазами, а вещество существует в газообразном состоянии по любым давлением.

Из анализа фазовой диаграммы следует, что при высоком давлении, большем чем в тройной точке (Р в), нагрев твердого вещества заканчивается его плавлением, например, при Р 1 плавления происходит в точке d . Дальнейшее повышение температуры от Т d к Т е приводит к кипению вещества при данном давлении Р 1 . При давлении Р 2 , меньшем, чем давление в тройной точке Р в, нагрев вещества приводит к его переходу непосредственно из кристаллического в газообразное состояние (точка q ), то есть к сублимации. Для большинства веществ давление в тройной точке ниже, чем давление насыщенного пара (Р в

Р насыщ.пара, поэтому при нагревании кристаллов таких веществ они не плавятся, а испаряются, то есть подвергаются сублимации. Например, так ведут себя кристаллы йода или «сухой лед» (твердый СО 2).


Анализ диаграммы состояния вещества

Газообразное состояние

При нормальных условиях (273 К, 101325 Па) в газообразном состоянии могут находиться как простые вещества, молекулы которых состоят из одного (Не, Ne, Ar) или из нескольких несложных атомов (Н 2 , N 2 , O 2), так и сложные вещества с малой молярной массой (СН 4 , HCl, C 2 H 6).

Поскольку кинетическая энергия частиц газа превышает их потенциальную энергию, то молекулы в газообразном состоянии непрерывно хаотически двигаются. Благодаря большим расстояниям между частицами силы межмолекулярного взаимодействия в газах настолько незначительны, что их не хватает для привлечения частиц друг к другу и удержания их вместе. Именно по этой причине газы не имеют собственной формы и характеризуются малой плотностью и высокой способностью к сжатию и к расширению. Поэтому газ постоянно давит на стенки сосуда, в котором он находится, одинаково во всех направлениях.

Для изучения взаимосвязи между важнейшими параметрами газа (давление Р, температура Т, количество вещества n, молярная масса М, масса m) используется простейшая модель газообразного состояния вещества — идеальный газ , которая базируется на следующих допущениях:

  • взаимодействием между частицами газа можно пренебречь;
  • сами частицы являются материальными точками, которые не имеют собственного размера.

Наиболее общим уравнением, описывающим модель идеального газа, считается уравнения Менделеева-Клапейрона для одного моля вещества:

Однако поведение реального газа отличается, как правило, от идеального. Это объясняется, во-первых, тем, что между молекулами реального газа все же действуют незначительные силы взаимного притяжения, которые в определенной степени сжимают газ. С учетом этого общее давление газа возрастает на величину a /V 2 , которая учитывает дополнительное внутреннее давление, обусловленное взаимным притяжением молекул. В результате общее давление газа выражается суммой Р+ а /V 2 . Во-вторых, молекулы реального газа имеют хоть и малый, но вполне определенный объем b , поэтому действительный объем всего газа в пространстве составляет V — b . При подстановке рассмотренных значений в уравнение Менделеева-Клапейрона получаем уравнение состояния реального газа, которое называется уравнением Ван-дер-Ваальса :

где а и b — эмпирические коэффициенты, которые определяются на практике для каждого реального газа. Установлено, что коэффициент a имеет большую величину для газов, которые легко сжижаются (например, СО 2 , NH 3), а коэффициент b — наоборот, тем выше по величине, чем больше размеры имеют молекулы газа (например, газообразные углеводороды).

Уравнение Ван-дер-Ваальса гораздо точнее описывает поведение реального газа, чем уравнения Менделеева-Клапейрона, которое тем не менее, благодаря наглядному физическому смыслу широко используется в практических расчетах. Хотя идеальное состояние газа является предельным, мнимым случаем, однако простота законов, которые ему отвечают, возможность их применения для описания свойств многих газов в условиях низких давлений и высоких температур делает модель идеального газа очень удобной.

Жидкое состояние вещества

Жидкое состояние любого конкретного вещества являются термодинамически устойчивым в определенном интервале температур и давлений, характерных для природы (состава) данного вещества. Верхний температурный предел жидкого состояния — температура кипения, выше которой вещество в условиях устойчивого давления находится в газообразном состоянии. Нижняя граница устойчивого состояния существования жидкости — температура кристаллизации (затвердевания). Температуры кипения и кристаллизации, измеренные при давлении 101,3 кПа, называются нормальными.

Для обычных жидкостей присуща изотропность — единообразие физических свойств во всех направлениях внутри вещества. Иногда для изотропности употребляют и другие термины: инвариантность, симметрия относительно выбора направления.

В формировании взглядов на природу жидкого состояния важное значение имеет представление о критическом состоянии, который был открыт Менделеевым (1860 г.):

Критическое состояние — это равновесное состояние, при котором предел разделения между жидкостью и ее паром исчезает, поскольку жидкость и ее насыщенный пар приобретают одинаковые физические свойства.

В критическом состоянии значение как плотностей, так и удельных объемов жидкости и ее насыщенного пара становятся одинаковыми.

Жидкое состояние вещества является промежуточным между газообразным и твердым. Некоторые свойства приближают жидкое состояние к твердому. Если для твердых веществ характерна жесткая упорядоченность частиц, которая распространяется на расстояние до сотен тысяч межатомных или межмолекулярных радиусов, то в жидком состоянии наблюдается, как правило, не более нескольких десятков упорядоченных частиц. Объясняется это тем, что упорядоченность между частицами в разных местах жидкого вещества быстро возникает, и так же быстро снова «размывается» тепловым колебаниям частиц. Вместе с тем общая плотность «упаковки» частиц мало отличается от твердого вещества, поэтому плотность жидкостей не сильно отличается от плотности большинства твердых тел. К тому же способность жидкостей к сжатию почти такая же мала, что и в твердых тел (примерно в 20000 раз меньше, чем у газов).

Структурный анализ подтвердил, что в жидкостях наблюдается так называемый ближний порядок , который означает, что число ближайших «соседей» каждой молекулы и их взаимное расположение примерно одинаковы по всему объему.

Относительно небольшое количество различных по составу частиц, соединенных силами межмолекулярного взаимодействия, называется кластером . Если все частицы в жидкости одинаковы, то такой кластер называется ассоциатом . Именно в кластерах и ассоциатах наблюдается ближний порядок.

Степень упорядоченности в различных жидкостях зависит от температуры. При низких температурах, незначительно превышающих температуру плавления, степень упорядоченности размещения частиц очень большая. С повышением температуры она уменьшается и по мере нагревания свойства жидкости все больше приближаются к свойствам газов, а по достижении критической температуры разница между жидким и газообразным состоянием исчезает.

Близость жидкого состояния к твердому подтверждается значениями стандартных энтальпий испарения DН 0 испарения и плавления DН 0 плавления. Напомним, что величина DН 0 испарения показывает количество теплоты, которая нужна для преобразования 1 моля жидкости в пар при 101,3 кПа; такое же количество теплоты расходуется на конденсацию 1 моля пара в жидкость при тех же условиях (т.е. DН 0 испарения = DН 0 конденсации). Количество теплоты, затрачиваемое на превращение 1 моля твердого вещества в жидкость при 101,3 кПа, называется стандартной энтальпией плавления ; такое же количество теплоты высвобождается при кристаллизации 1 моля жидкости в условиях нормального давления (DН 0 плавления = DН 0 кристаллизации). Известно, что DН 0 испарения << DН 0 плавления, поскольку переход из твердого состояния в жидкое сопровождается меньшим нарушением межмолекулярного притяжения, чем переход из жидкого в газообразное состояние.

Однако другие важные свойства жидкостей больше напоминают свойства газов. Так, подобно газам, жидкости могут течь — это свойство называется текучестью . Они могут сопротивляться течению, то есть им присуща вязкость . На эти свойства влияют силы притяжения между молекулами, молекулярная масса жидкого вещества и другие факторы. Вязкость жидкостей примерно в 100 раз больше, чем у газов. Так же, как и газы, жидкости способны диффундировать, но гораздо медленнее, поскольку частицы жидкости упакованы плотнее, чем частицы газа.

Одной из самых интересных свойств жидкого состояния, которая не характерна ни для газов, ни для твердых веществ, является поверхностное натяжение .


Схема поверхностного натяжения жидкости

На молекулу, находящуюся в объеме жидкости, со всех сторон равномерно действуют межмолекулярные силы. Однако на поверхности жидкости баланс этих сил нарушается, вследствие чего поверхностные молекулы находятся под действием некоторой результирующей силы, которая направлена ​​внутрь жидкости. По этой причине поверхность жидкости находится в состоянии натяжения. Поверхностное натяжение — это минимальная сила, которая удерживает частицы жидкости внутри и тем самым предотвращает сокращении поверхности жидкости.

Строение и свойства твердых веществ

Большинство известных веществ как природного, так и искусственного происхождения при обычных условиях находятся в твердом состоянии. Из всех известных на сегодня соединений около 95% относятся к твердым веществам, которые приобрели важное значение, поскольку является основой не только конструкционных, но и функциональных материалов.

  • Конструкционные материалы — это твердые вещества или их композиции, которые используются для изготовления орудий труда, предметов быта, и различных других конструкций.
  • Функциональные материалы — это твердые вещества, использование которых обусловлено наличием в них тех или иных полезных свойств.

Например, сталь, алюминий, бетон, керамика принадлежат к конструкционным материалам, а полупроводники, люминофоры — к функциональным.

В твердом состоянии расстояния между частицами вещества маленькие и имеют по величине такой же порядок, что и сами частицы. Энергии взаимодействия между ними достаточно велики, что предотвращает свободное движение частиц — они могут только колебаться относительно определенных равновесных положений, например, вокруг узлов кристаллической решетки. Неспособность частиц к свободному перемещению приводит к одной из самых характерных особенностей твердых веществ — наличие собственной формы и объема. Способность к сжатию у твердых веществ очень незначительна, а плотность высокая и мало зависит от изменения температуры. Все процессы, происходящие в твердом веществе, происходят медленно. Законы стехиометрии для твердых веществ имеют другой и, как правило, более широкий смысл, чем для газообразных и жидких веществ.

Подробное описание твердых веществ слишком объемно для этого материала и поэтому рассматривается в отдельных статьях: , и .

Определение 1

Агрегатные состояния вещества (от лат. “aggrego” означает “присоединяю”, “связываю”) – это состояния одного и того же вещества в твердом, жидком и газообразном виде.

При переходе из одного состояния в другое наблюдается скачкообразное изменение энергии, энтропии, плотности и прочих свойств вещества.

Твердые и жидкие тела

Определение 2

Твердые тела – это тела, которые отличаются постоянством своей формы и объема.

В твердых телах межмолекулярные расстояния маленькие, а потенциальную энергию молекул можно сравнить с кинетической.

Твёрдые тела подразделяются на 2 вида:

  1. Кристаллические;
  2. Аморфные.

В состоянии термодинамического равновесия находятся только лишь кристаллические тела. Аморфные же тела по факту представляют собой метастабильные состояния, которые по строению схожи с неравновесными, медленно кристаллизующимися жидкостями. В аморфном теле происходит чересчур медленный процесс кристаллизации, процесс постепенного преобразования вещества в кристаллическую фазу. Разница кристалла от аморфного твердого тела состоит, в первую очередь, в анизотропии его свойств. Свойства кристаллического тела определяются в зависимости от направления в пространстве. Разнообразные процессы (например, теплопроводность, электропроводность, свет, звук) распространяются в разных направлениях твердого тела по-разному. А вот аморфные тела (например, стекло, смолы, пластмассы) изотропные, как и жидкости. Разница аморфных тел от жидкостей заключается лишь только в том, что последние текучие, в них не происходят статические деформации сдвига.

У кристаллических тел правильное молекулярное строение. Именно за счет правильного строения кристалл имеет анизотропные свойства. Правильное расположение атомов кристалла создает так называемую кристаллическую решетку. В разных направлениях месторасположение атомов в решетке различное, что и приводит к анизотропии. Атомы (ионы либо целые молекулы) в кристаллической решетке совершают беспорядочное колебательное движение возле средних положений, которые и рассматриваются в качестве узлов кристаллической решетки. Чем выше температура, тем выше энергия колебаний, а значит, и средняя амплитуда колебаний. В зависимости от амплитуды колебаний определяется размер кристалла. Увеличение амплитуды колебаний приводит к увеличению размеров тела. Таким образом, объясняется тепловое расширение твердых тел.

Определение 3

Жидкие тела – это тела, имеющие определенный объем, но не имеющие упругой формы.

Для вещества в жидком состоянии характерно сильное межмолекулярное взаимодействие и малая сжимаемость. Жидкость занимает промежуточное положение между твердым телом и газом. Жидкости, также как и газы, обладают изотpопными свойствами. Помимо этого, жидкость обладает свойством текучести. В ней, как и в газах, нет касательного напряжения (напряжения на сдвиг) тел. Жидкости тяжелые, то есть их удельные веса можно сравнить с удельными весами твердых тел. Вблизи температур кристаллизации их теплоемкости и прочие тепловые свойства близки к соответствующим свойствам твердых тел. В жидкостях наблюдается до заданной степени правильное расположение атомов, но только лишь в маленьких областях. Здесь атомы также проделывают колебательное движение около узлов квазикристаллической ячейки, однако в отличие от атомов твердого тела они периодически перескакивают от одного узла к другому. В итоге движение атомов будет весьма сложное: колебательное, но вместе с тем центр колебаний перемещается в пространстве.

Определение 4

Газ – это такое состояние вещества, при котором расстояния между молекулами огромны.

Силами взаимодействия между молекулами при небольших давлениях можно пренебречь. Частицы газа заполоняют весь объем, который предоставлен для газа. Газы рассматривают как сильно перегретые либо ненасыщенные пары. Особый вид газа – плазма (частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов почти одинаковые). То есть плазма – это газ из заряженных частиц, взаимодействующих между собой при помощи электрических сил на большом расстоянии, но не имеющих ближнего и дальнего расположения частиц.

Как известно, вещества способны переходить из одного агрегатного состояния в другое.

Определение 5

Испарение – это процесс изменения агрегатного состояния вещества, при котором с поверхности жидкости либо твердого тела вылетают молекулы, кинетическая энергия которых преобразовывает потенциальную энергию взаимодействия молекул.

Испарение является фазовым переходом. При испарении часть жидкости или твердого тела преобразуется в пар.

Определение 6

Вещество в газообразном состоянии, которое находится в динамическом равновесии с жидкостью, называется насыщенным паром . При этом изменение внутренней энергии тела равняется:

∆ U = ± m r (1) ,

где m – это масса тела, r – это удельная теплота парообразования (Д ж / к г) .

Определение 7

Конденсация представляет собой процесс, обратный парообразованию.

Изменение внутренней энергии рассчитывается по формуле (1) .

Определение 8

Плавление – это процесс преобразования вещества из твердого состояния в жидкое, процесс изменения агрегатного состояния вещества.

При нагревании вещества растет его внутренняя энергия, поэтому увеличивается скорость теплового движения молекул. При достижении веществом своей температуры плавления кристаллическая решетка твердого тела разрушается. Связи между частицами также разрушаются, растет энергия взаимодействия между частицами. Теплота, которая передается телу, идет на увеличение внутренней энергии данного тела, и часть энергии расходуется на совершение работы по изменению объема тела при его плавлении. У многих кристаллических тел объем увеличивается при плавлении, однако есть исключения (к примеру, лед, чугун). Аморфные тела не обладают определенной температурой плавления. Плавление представляет собой фазовый переход, который характеризуется скачкообразным изменением теплоемкости при температуре плавления. Температура плавления зависит от вещества и она остается неизменной в ходе процесса. Тогда изменение внутренней энергии тела равняется:

∆ U = ± m λ (2) ,

где λ – это удельная теплота плавления (Д ж / к г) .

Определение 9

Кристаллизация представляет собой процесс, обратный плавлению.

Изменение внутренней энергии рассчитывается по формуле (2) .

Изменение внутренней энергии каждого тела системы при нагревании или охлаждении вычисляется по формуле:

∆ U = m c ∆ T (3) ,

где c – это удельная теплоемкость вещества, Д ж к г К, △ T – это изменение температуры тела.

Определение 10

При рассматривании преобразований веществ из одних агрегатных состояний в другие нельзя обойтись без так называемого уравнения теплового баланса : суммарное количество теплоты, выделяемое в теплоизолированной системе, равняется количеству теплоты (суммарному), которое в данной системе поглощается.

Q 1 + Q 2 + Q 3 + . . . + Q n = Q " 1 + Q " 2 + Q " 3 + . . . + Q " k .

По сути, уравнение теплового баланса – это закон сохранения энергии для процессов теплообмена в термоизолированных системах.

Пример 1

В теплоизолированном сосуде находятся вода и лед с температурой t i = 0 ° C . Масса воды m υ и льда m i соответственно равняется 0 , 5 к г и 60 г. В воду впускают водяной пар массой m p = 10 г при температуре t p = 100 ° C . Какой будет температура воды в сосуде после того, как установится тепловое равновесие? При этом теплоемкость сосуда учитывать не нужно.

Рисунок 1

Решение

Определим, какие процессы осуществляются в системе, какие агрегатные состояния вещества мы наблюдали и какие получили.

Водяной пар конденсируется, отдавая при этом тепло.

Тепловая энергия идет на плавление льда и, может быть, нагревание имеющейся и полученной изо льда воды.

Прежде всего, проверим, сколько теплоты выделяется при конденсации имеющейся массы пара:

Q p = - r m p ; Q p = 2 , 26 · 10 6 · 10 - 2 = 2 , 26 · 10 4 (Д ж) ,

здесь из справочных материалов у нас есть r = 2 , 26 · 10 6 Д ж к г – удельная теплота парообразования (применяется и для конденсации).

Для плавления льда понадобится следующее количество тепла:

Q i = λ m i Q i = 6 · 10 - 2 · 3 , 3 · 10 5 ≈ 2 · 10 4 (Д ж) ,

здесь из справочных материалов у нас есть λ = 3 , 3 · 10 5 Д ж к г – удельная теплота плавления льда.

Выходит, что пар отдает тепла больше, чем необходимо, только для расплавления имеющегося льда, значит, уравнение теплового баланса запишем следующим образом:

r m p + c m p (T p - T) = λ m i + c (m υ + m i) (T - T i) .

Теплота выделяется при конденсации пара массой m p и остывании воды, образуемой из пара от температуры T p до искомой T . Теплота поглощается при плавлении льда массой m i и нагревании воды массой m υ + m i от температуры T i до T . Обозначим T - T i = ∆ T для разности T p - T получаем:

T p - T = T p - T i - ∆ T = 100 - ∆ T .

Уравнение теплового баланса будет иметь вид:

r m p + c m p (100 - ∆ T) = λ m i + c (m υ + m i) ∆ T ; c (m υ + m i + m p) ∆ T = r m p + c m p 100 - λ m i ; ∆ T = r m p + c m p 100 - λ m i c m υ + m i + m p .

Сделаем вычисления с учетом того, что теплоемкость воды табличная

c = 4 , 2 · 10 3 Д ж к г К, T p = t p + 273 = 373 К, T i = t i + 273 = 273 К: ∆ T = 2 , 26 · 10 6 · 10 - 2 + 4 , 2 · 10 3 · 10 - 2 · 10 2 - 6 · 10 - 2 · 3 , 3 · 10 5 4 , 2 · 10 3 · 5 , 7 · 10 - 1 ≈ 3 (К) ,

тогда T = 273 + 3 = 276 К

Ответ: Температура воды в сосуде после установления теплового равновесия будет равняться 276 К.

Пример 2

На рисунке 2 изображен участок изотермы, который отвечает переходу вещества из кристаллического в жидкое состояние. Что соответствует данному участку на диаграмме p , T ?

Рисунок 2

Ответ: Вся совокупность состояний, которые изображены на диаграмме p , V горизонтальным отрезком прямой на диаграмме p , T показано одной точкой, которая определяет значения p и T , при которых происходит преобразование из одного агрегатного состояния в другое.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Агрега́тное состоя́ние - состояние вещества, характеризующееся определёнными качественными свойствами: способностью или неспособностью сохранять объём и форму, наличием или отсутствием дальнего и ближнего порядка и другими. Изменение агрегатного состояния может сопровождаться скачкообразным изменением свободной энергии, энтропии, плотности и других основных физических свойств.
Выделяют три основных агрегатных состояния: твёрдое тело, жидкость и газ. Иногда не совсем корректно к агрегатным состояниям причисляют плазму. Существуют и другие агрегатные состояния, например, жидкие кристаллы или конденсат Бозе - Эйнштейна. Изменения агрегатного состояния это термодинамические процессы, называемые фазовыми переходами. Выделяют следующие их разновидности: из твёрдого в жидкое - плавление; из жидкого в газообразное - испарение и кипение; из твёрдого в газообразное - сублимация; из газообразного в жидкое или твёрдое - конденсация; из жидкого в твёрдое - кристаллизация. Отличительной особенностью является отсутствие резкой границы перехода к плазменному состоянию.
Определения агрегатных состояний не всегда являются строгими. Так, существуют аморфные тела, сохраняющие структуру жидкости и обладающие небольшой текучестью и способностью сохранять форму; жидкие кристаллы текучи, но при этом обладают некоторыми свойствами твёрдых тел, в частности, могут поляризовать проходящее через них электромагнитное излучение. Для описания различных состояний в физике используется более широкое понятие термодинамической фазы. Явления, описывающие переходы от одной фазы к другой, называют критическими явлениями.
Агрегатное состояние вещества зависит от физических условий, в которых оно находится, главным образом от температуры и от давления. Определяющей величиной является отношение средней потенциальной энергии взаимодействия молекул к их средней кинетической энергии. Так, для твёрдого тeла это отношение больше 1, для газов меньше 1, а для жидкостей приблизительно равно 1. Переход из одного агрегатного состояния вещества в другое сопровождается скачкообразным изменением величины данного отношения, связанным со скачкообразным изменением межмолекулярных расстояний и межмолекулярных взаимодействий. В газах межмолекулярные расстояния велики, молекулы почти не взаимодействуют друг с другом и движутся практически свободно, заполняя весь объём. В жидкостях и твёрдых телах -конденсированных средах - молекулы (атомы)расположены значительно ближе друг к другу и взаимодействуют сильнее.
Это приводит к сохранению жидкостями и твёрдыми телами своего объёма. Однако, характер движения молекул в твёрдых телах и жидкостях различен, чем и объясняется различие их структуры и свойств.
У твёрдых тел в кристаллообразном состоянии атомы совершают лишь колебания вблизи узлов кристаллической решётки; структура этих тел характеризуется высокой степенью упорядоченности - дальним и ближним порядком. Тепловое движение молекул (атомов) жидкости представляет собой сочетание малых колебаний около положений равновесия и частых перескоков из одного положения равновесия в другое. Последние и обусловливают существование в жидкостях лишь ближнего порядка в расположении частиц, а также свойственные им подвижность и текучесть.
а. Твёрдое тело - состояние, характеризующееся способностью сохранять объём и форму. Атомы твёрдого тела совершают лишь небольшие колебания вокруг состояния равновесия. Присутствует как дальний, так и ближний порядок.
б. Жидкость - состояние вещества, при котором оно обладает малой сжимаемостью, то есть хорошо сохраняет объём, однако не способно сохранять форму. Жидкость легко принимает форму сосуда, в который она помещена. Атомы или молекулы жидкости совершают колебания вблизи состояния равновесия, запертые другими атомами, и часто перескакивают на другие свободные места. Присутствует только ближний порядок.
Плавление - это переход вещества из твердого агрегатного состояния (см. Агрегатные состояния вещества) в жидкое. Этот процесс происходит при нагревании, когда телу сообщают некоторое количество теплоты +Q. Например, легкоплавкий металл свинец переходит из твердого состояния в жидкое, если его нагреть до температуры 327 С. Свинец запросто плавится на газовой плите, например в ложке из нержавеющей стали (известно, что температура пламени газовой горелки - 600-850°С, а температура плавления стали - 1300-1500°С).
Если, плавя свинец, измерять его температуру, то можно обнаружить, что сначала она плавно возрастает, но после некоторого момента остается постоянной, несмотря на дальнейшее нагревание. Этот момент соответствует плавлению. Температура держится постоянной до тех пор, пока весь свинец не расплавится, и только после этого начинает повышаться снова. При охлаждении жидкого свинца наблюдается обратная картина: температура падает до момента начала затвердевания и остается постоянной все время, пока свинец не перейдет в твердую фазу, а потом вновь понижается.
Аналогичным образом ведут себя все чистые вещества. Постоянство температуры при плавлении имеет большое практическое значение, поскольку позволяет градуировать термометры, изготавливать плавкие предохранители и индикаторы, которые расплавляются при строго заданной температуре.
Атомы в кристалле колеблются около своих положений равновесия. С повышением температуры амплитуда колебаний возрастает и достигает некоторой критической величины, после чего кристаллическая решетка разрушается. Для этого требуется дополнительная тепловая энергия, поэтому в процессе плавления температура не повышается, хотя тепло продолжает поступать.
Температура плавления вещества зависит от давления. Для веществ, у которых объем при плавлении возрастает (а таких подавляющее большинство), повышение давления повышает температуру плавления и наоборот. У воды объем при плавлении уменьшается (поэтому, замерзая, вода разрывает трубы), и при повышении давления лед плавится при более низкой температуре. Аналогичным образом ведут себя висмут, галлий и некоторые марки чугунов.
в. Газ - состояние, характеризующееся хорошей сжимаемостью, отсутствием способности сохранять как объём, так и форму. Газ стремится занять весь объём, ему предоставленный. Атомы или молекулы газа ведут себя относительно свободно, расстояния между ними гораздо больше их размеров.
Часто причисляемая к агрегатным состояниям вещества плазма отличается от газа большой степенью ионизации атомов. Большая часть барионного вещества (по массе ок. 99,9 %) во Вселенной находится в состоянии плазмы.
г. Сверхкритический флюид - Возникает при одновременном повышении температуры и давления до критической точки, в которой плотность газа сравнивается с плотностью жидкости; при этом исчезает граница между жидкой и газообразной фазами. Сверхкритический флюид отличается исключительно высокой растворяющей способностью.
д. Конденсат Бозе - Эйнштейна - получается в результате охлаждения бозе-газа до температур, близких к абсолютному нулю. В результате этого часть атомов оказывается в состоянии со строго нулевой энергией (то есть в низшем из возможных квантовом состоянии). Конденсат Бозе - Эйнштейна проявляет ряд квантовых свойств, таких как сверхтекучесть и резонанс Фишбаха.
е. Фермионный конденсат - представляет собой Бозе-конденсацию в режиме БКШ «атомных куперовских пар» в газах состоящих из атомов-фермионов. (В отличие от традиционного режима бозе-эйнштейновской конденсации составных бозонов).
Такие фермионные атомные конденсаты являются «родственниками» сверхпроводников, но с критической температурой порядка комнатной и выше.
Вырожденная материя - Ферми-газ 1-я стадия Электронно-вырожденный газ, наблюдается в белых карликах, играет важную роль в эволюции звёзд. 2-я стадия нейтронное состояние в него вещество переходит при сверхвысоком давлении, недостижимом пока в лаборатории, но существующем внутри нейтронных звёзд. При переходе в нейтронное состояние электроны вещества взаимодействуют с протонами и превращаются в нейтроны. В результате вещество в нейтронном состоянии полностью состоит из нейтронов и обладает плотностью порядка ядерной. Температура вещества при этом не должна быть слишком высока (в энергетическом эквиваленте не более сотни МэВ).
При сильном повышении температуры (сотни МэВ и выше) в нейтронном состоянии начинают рождаться и аннигилировать разнообразные мезоны. При дальнейшем повышении температуры происходит деконфайнмент, и вещество переходит в состояние кварк-глюонной плазмы. Оно состоит уже не из адронов, а из постоянно рождающихся и исчезающих кварков и глюонов. Возможно, деконфайнмент происходит в два этапа.
При дальнейшем неограниченном повышении давления без повышения температуры вещество коллапсирует в чёрную дыру.
При одновременном повышении и давления, и температуры к кваркам и глюонам добавляются иные частицы. Что происходит с веществом, пространством и временем при температурах, близких к планковской, пока неизвестно.
Другие состояния
При глубоком охлаждении некоторые (далеко не все) вещества переходят в сверхпроводящее или сверхтекучее состояние. Эти состояния, безусловно, являются отдельными термодинамическими фазами, однако их вряд ли стоит называть новыми агрегатными состояниями вещества в силу их неуниверсальности.
Неоднородные вещества типа паст, гелей, суспензий, аэрозолей и т. д., которые при определённых условиях демонстрируют свойства как твёрдых тел, так и жидкостей и даже газов, обычно относят к классу дисперсных материалов, а не к каким-либо конкретным агрегатным состояниям вещества.

Агрегатные состояния вещества (от латинского aggrego - присоединяю, связываю) - это состояния одного и того же вещества, переходам между которыми соответствуют скачкообразные изменения свободной энергии, энтропии, плотности и других физических параметров вещества.

Газ (французское gaz, происшедшее от греческого chaos - хаос) - это агрегатное состояние вещества, в котором силы взаимодействия его частиц, заполняющих весь предоставленный им объем, пренебрежимо малы. В газах межмолекулярные расстояния велики и молекулы движутся практически свободно.

  • Газы можно рассматривать как значительно перегретые или малонасыщенные пары.
  • Над поверхностью каждой жидкости вследствие испарения находится пар. При повышении давления пара до определенного предела, называемого давлением насыщенного пара, испарение жидкости прекращается, так как давление пара и жидкости становится одинаковым.
  • Уменьшение объема насыщенного пара вызывает конденсацию части пара, а не повышение давления. Поэтому давление пара не может быть выше давления насыщенного пара. Состояние насыщения характеризуется массой насыщения, содержащейся в 1м массой насыщенного пара, которая зависит от температуры. Насыщенный пар может стать ненасыщенным, если увеличивать его объем или повышать температуру. Если температура пара много выше точки кипения, соответствующей данному давлению, пар называется перегретым.

Плазмой называется частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Солнце, звезды, облака межзвездного вещества состоят из газов - нейтральных или ионизованных (плазмы). В отличие от других агрегатных состояний плазма представляет собой газ заряженных частиц (ионов, электронов), которые электрически взаимодействуют друг с другом на больших расстояниях, но не обладают ни ближним, ни дальним порядками в расположении частиц.

Жидкость - это агрегатное состояние вещества, промежуточное между твердым и газообразным.

  1. Жидкостям присущи некоторые черты твердого вещества (сохраняет свой объем, образует поверхность, обладает определенной прочностью на разрыв) и газа (принимает форму сосуда, в котором находится).
  2. Тепловое движение молекул (атомов) жидкости представляет собой сочетание малых колебаний около положений равновесия и частых перескоков из одного положения равновесия в другое.
  3. Одновременно происходят медленные перемещения молекул и их колебания внутри малых объемов, частые перескоки молекул нарушают дальний порядок в расположении частиц и обусловливают текучесть жидкостей, а малые колебания около положений равновесия обусловливают существование в жидкостях ближнего порядка.

Жидкости и твердые вещества, в отличие от газов, можно рассматривать как высоко конденсированные среды. В них молекулы (атомы) расположены значительно ближе друг к другу и силы взаимодействия на несколько порядков больше, чем в газах. Поэтому жидкости и твердые вещества имеют существенно ограниченные возможности для расширения, заведомо не могут занять произвольный объем, а при постоянных давлении и температуре сохраняют свой объем, в каком бы объеме их не размещали. Переходы из более упорядоченного по структуре агрегатного состояния в менее упорядоченное могут происходить и непрерывно. В связи с этим вместо понятия агрегатного состояния целесообразно пользоваться более широким понятием - понятием фазы.

Фазой называется совокупность всех частей системы, обладающих одинаковым химическим составом и находящихся в одинаковом состоянии. Это оправдано одновременным существованием термодинамически равновесных фаз в многофазной системе: жидкости со своим насыщенным паром; воды и льда при температуре плавления; двух несмешивающихся жидкостей (смесь воды с триэтиламином), отличающихся концентрациями; существованием аморфных твердых веществ, сохраняющих структуру жидкости (аморфное состояние).

Аморфное твердое состояние вещества является разновидностью переохлажденного состояния жидкости и отличается от обычных жидкостей существенно большей вязкостью и численными значениями кинетических характеристик.

Кристаллическое твердое состояние вещества - это агрегатное состояние, которое характеризуется большими силами взаимодействия между частицами вещества (атомами, молекулами, ионами). Частицы твердых тел совершают колебания около средних равновесных положений, называемых узлами кристаллической решетки; структура этих веществ характеризуется высокой степенью упорядоченности (дальним и ближним порядком) - упорядоченностью в расположении (координационный порядок), в ориентации (ориентационный порядок) структурных частиц, или упорядоченностью физических свойств (например, в ориентации магнитных моментов или электрических дипольных моментов). Область существования нормальной жидкой фазы для чистых жидкостей, жидкого и жидких кристаллов ограничена со стороны низких температур фазовыми переходами соответственно в твердое (кристаллизацией), сверхтекучее и жидко-анизотропное состояние.