Периодическая система химических элементов. Периодическая система Д

Состоит из вертикальных рядов (групп) и горизонтальных рядов (периодов). Для лучшего понимания принципов объединения элементов в группы и периоды, рассмотрим нескольких элементов, скажем, первой, четвертой и седьмой групп.

Из приведенных выше электронных конфигураций видно, что внешние (самые высо­кие по энергии) электронные оболочки атомов одной группы заполнены электронами одинаково. К одной группе принадлежат элементы, расположенные в одном вертикальном столбце таблицы. Элементы IVA груп­пы периодической системы имеет два электрона на s-орбитали и два электрона на р-орбиталях. Конфи­гурация внешней электронной оболочки атомов фтора F, хлора Сl и бро­ма Вг также одинакова (два s- и пять р-электронов). И эти элементы от­носятся к одной группе (VIIA). Атомы элементов одной группы имеют одинаковое строение внешней электронной оболочки. Именно поэтому такие элементы имеют сходные химические свойства. Химические свой­ства каждого элемента определяются электронным строением атомов этого элемента . Это основополагающий принцип современной химии. Именно он лежит в основе периодической системы.

Номер группы периодической системы соответствует числу электро­нов на внешней электронной оболочке атомов элементов этой группы. Номер периода (горизонтального ряда периодической таблицы) совпа­дает с номером высшей занятой электронной орбитали. Например, нат­рий и хлор — оба элементы 3-го периода и у обоих типов атомов высший, заполненный электронами,уровень - третий.

Строго говоря, число электронов на внешней электронной оболочке определяет номер группы только для так называемых непереходных элементов, расположенных в группах с буквенным индексом А.

Электронное строение атомов определяет химические и физи­ческие свойства элементов. А т.к электронное строение атомов повторяется через период, то и свойства элементов также повторяются периодически.

Периодический закон Д. И. Менделеева имеет следующую формулировку: «свойства химических элементов, а также формы и свойства образуемых ими простых веществ и соединений находятся в периодической зависимости от величины зарядов ядер их атомов» .

Размеры атомов

Нам следует остановиться еще на двух видах информации, получае­мой из периодической системы. Первый из них — вопрос о размере (радиусе) атомов. Если двигаться вниз в пределах данной группы, переход к каждому следующему элементу означает заполнение электронами следующего, все более высокого уровня. В группе IA внешний электрон атома натрия находится на Зs-орбитали, калия — на 4s-орбитали, руби­дия - 5s-орбитали и т. д. Поскольку 4s-орбиталь больше по размеру, чем Зs-орбиталь, атом калия имеет большие размеры, чем атом натрия. По этой же причине в каждой группе размеры атомов возрастают сверху вниз .

При движении направо по периоду атомные массы возрастают, но размеры атомов, как правило, уменьшаются. Во 2-м периоде, например, атом неона Ne имеет меньший размер, чем атом фтора, который, в свою очередь, меньше атома кислорода.

Электроотрицательность

Другая тенденция, выявляемая с помощью периодической таблицы,- закономерное изменение злектроотрицательности элементов, т. е. отно­сительной способности атомов притягивать электроны, образующие свя­зи с другими атомами. Например, атомы инертных газов не склонны приобретать или терять электроны, тогда как атомы металлов легко от­дают электроны, а атомы неметаллов охотно их принимают. Электро­отрицательность (способность притягивать, приобретать электроны) возрастает слева направо в пределах периода и снизу вверх в пределах группы. Последняя группа (инертные газы) выпадает из этих законо­мерностей.

Фтор F, расположенный в правом верхнем углу периодической сис­темы, - наиболее электроотрицательный элемент, а франций Fr, находя­щийся в левом нижнем углу, наименее электроотрицателен. Изменение электроотрицательности также показано стрелками на рисунке.Пользуясь этой закономерностью, можно, например, утверждать, что кислород более электроотрицательный элемент, чем углерод или сера. Это значит, что атомы кислорода сильнее притягивают к себе электроны, чем атомы углерода и серы.

Первая и широко известная шкала относительных атомных электроотрицательностей Полинга охватывает значения от 0,7 для атомов франция до 4,0 для атомов фтора.

Электронное строение инертных газов

Элементы последней группы периодической системы называются инертными (благородными) газами. В атомах этих элементов, кроме гелия Не, на внешней электронной оболочке имеется восемь электронов. Инертные газы не вступают в химические реакции и не образуют ника­ких соединений с другими элементами (кроме очень немногих исключе­ний). Это связано с тем, что конфигурация из восьми электронов на внешней электронной оболочке чрезвычайно стабильна.

Атомы других элементов образуют химические связи таким образом, чтобы на их внеш­ней оболочке оказалось восемь электронов. Это положение часто назы­вают правилом октета .


    Периодическая система химических элементов. Периодическая система хим. эл тов ПЕРИОДИЧЕСКАЯ СИСТЕМА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ, естественная классификация химических элементов, являющаяся табличным выражением периодического закона. Современная… … Иллюстрированный энциклопедический словарь

    ПЕРИОДИЧЕСКАЯ СИСТЕМА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ - создана Д. И. Менделеевым и состоит в расположении х. э. в строго определенном порядке по их атомному весу; свойства х. э. находятся в тесной связи с их местонахождением в п. с., а правильное расположение в последней х. э. дало возможность… … Словарь иностранных слов русского языка

    периодическая система химических элементов - естественная система химических элементов, разработанная Д. И. Менделеевым на основе открытого им (1869) периодического закона. Современная формулировка этого закона звучит так: свойства элементов находятся в периодической зависимости от заряда… … Энциклопедический словарь

    ПЕРИОДИЧЕСКАЯ СИСТЕМА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ - естеств. система хим. элементов, разработанная Д. И. Менделеевым на основе открытого им (1869) периодич. закона. Совр. формулировка этого закона звучит так: свойства элементов находятся в периодич. зависимости от заряда их атомных ядер. Заряд… …

    ПЕРИОДИЧЕСКАЯ СИСТЕМА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ - упорядоченное множество хим. элементов, их естеств. классификация, являющаяся табличным выражением периодического закона Менделеева. Прообразом пе риодич. системы хим. элементов (П. с.) послужила таблица Опыт системы элементов, основанной на их… … Химическая энциклопедия

    ПЕРИОДИЧЕСКАЯ СИСТЕМА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ - Относительные массы приведены по Международной таблице 1995 года (точность указана для последней значащей цифры). Для элементов, не имеющих стабильных нуклидов (за исключением Th, Ра и U, распространённых в земной коре), в квадратных скобках… … Естествознание. Энциклопедический словарь

    Периодическая законность химических элементов

    Периодическая таблица химических элементов - Периодическая система химических элементов (таблица Менделеева) классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона,… … Википедия

    Система химических элементов периодическая - система химических элементов, разработанная русским учёным Д. И. Менделеевым (1834 1907) на основе открытого им (1869) периодического закона. Современная формулировка этого закона звучит так: свойства элементов находятся в периодической… … Концепции современного естествознания. Словарь основных терминов

    ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ - ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ, периодический закон. Уже с давних пор были делаемы попытки установить зависимость свойств элементов от их атомного веса: Деберейнер (Dobereiner, 1817) указал на триад ы подобных элементов, между атомными весами к… … Большая медицинская энциклопедия

Книги

  • Периодическая система химических элементов Менделеева , . Периодическая система химических элементов Д. И. Менделеева. Настенное издание. (Вкл. новые элементы). Размер 69, 6 х 91 см. Материал: мелованный… Купить за 339 руб
  • Периодическая система химических элементов Д. И. Менделеева. Таблица растворимости , . Периодическая система химических элементов Д. И. Менделеева и справочные таблицы по химии… Купить за 44 руб
  • Периодическая система химических элементов Д. И. Менделеева. Растворимость кислот, оснований и солей в воде. Настенная таблица (двухсторонняя, ламинированная) , . Периодическая система химических элементов Д. И. Менделеева. + Таблица растворимости кислот, оснований и солей в воде…

Периодическая система химических элементов — это классификация химических элементов, основанная на определенных особенностях строения атомов химических элементов. Она была составлена на основе Периодического закона, открытого в 1869 году Д. И. Менделеевым. В то время Периодическая система включала 63 химических элементов и по виду отличалась от современной. Сейчас в Периодической системы входят около ста двадцати химических элементов.

Периодическую систему составлен в виде таблицы, в которой химические элементы расположены в определенном порядке: по мере роста их атомных масс. Сейчас существует много видов изображения Периодической системы. Наиболее распространенным является изображение в виде таблицы с расположением элементов слева направо.

Все химические элементы в Периодической системе объединены в периоды и группы. Периодическая система включает семь периодов и восемь групп. Периодами называют горизонтальные ряды химических элементов, в которых свойства элементов изменяются от типичных металлических к неметаллическим. Вертикальные колонки химических элементов, которые содержат элементы, схожие по химическим свойствам, образуют группы химических элементов.

Первый, второй и третий периоды называют малыми, поскольку они содержат небольшое количество элементов (первый — два элемента, второй и третий — по восемь элементов). Элементы второго и третьего периодов называют типовыми, их свойства закономерно изменяются от типичного металла до инертного газа.

Все остальные периоды называют большими (четвертый и пятый содержат по 18 элементов, шестой — 32 и седьмой — 24 элемента). Особое сходство свойств проявляют элементы, находящиеся внутри больших периодов, в конце каждого четного ряда. Это так называемые триады: Ферум — Кобальт — Никол, образующих семью железа, и две другие: Рутений — Родий — Палладий и Осмий — Иридий — Платина, которые образуют семью платиновых металлов (платиноидов).

В нижней части таблицы Д. И. Менделеева расположены химические элементы, образующие семью лантаноидов и семью актиноидов. Все эти элементы формально входят в состав третьей группы и идут после химических элементов лантана (номер 57) и актиния (номер 89).

Периодическая система элементов содержит десять рядов. Малые периоды (первый, второй и третий) состоят из одного ряда, большие периоды (четвертый, пятый и шестой) содержат по два ряда каждый. В седьмом периоде находится один ряд.

Каждый большой период состоит из четного и нечетного рядов. В парных рядах содержатся элементы металлы, в нечетных рядах свойства элементов изменяются так, как в типовых элементов, т.е. от металлических до выраженных неметаллических.

Каждая группа таблицы Д. И. Менделеева состоит из двух подгрупп: главной и побочной. В состав главных подгрупп входят элементы как малых, так и больших периодов, то есть главные подгруппы начинаются либо с первого, или второго периода. В состав побочных подгрупп входят элементы только больших периодов, т.е. побочные подгруппы начинаются лишь с четвертого периода.

Девятнадцатый век в истории человечества - век, в который многие науки реформировались, в том числе и химия. Именно в это время появилась периодическая система Менделеева, а вместе с ней - и периодический закон. Именно он стал основой современной химии. Периодическая система Д. И. Менделеева представляет собой систематизацию элементов, которая устанавливает зависимость химических и физических свойств от строения и заряда атома вещества.

История

Начало периодической положила книга «Соотношение свойств с атомным весом элементов», написанная в третьей четверти XVII века. В ней были отображены основные понятия относительно известных химических элементов (на тот момент их насчитывалось всего 63). К тому же у многих из них атомные массы были определены неправильно. Это сильно мешало открытию Д. И. Менделеева.

Дмитрий Иванович начал свою работу со сравнения свойств элементов. В первую очередь он занялся хлором и калием, а уж потом перешёл к работе со щелочными металлами. Вооружась специальными карточками, на которых были изображены химические элементы, он многократно пытался собрать эту «мозаику»: раскладывал на своем столе в поисках нужных комбинаций и совпадений.

После долгих стараний Дмитрий Иванович все же нашёл ту закономерность, которую искал, и выстроил элементы в периодические ряды. Получив в результате пустые ячейки между элементами, учёный понял, что русским исследователям известны не все химические элементы, и что именно он должен дать этому миру те знания в области химии, которые ещё не были даны его предшественниками.

Всем известен миф о том, что Менделееву периодическая таблица явилась во сне, и он по памяти собрал элементы в единую систему. Это, грубо говоря, ложь. Дело в том, что Дмитрий Иванович довольно долго и сосредоточенно работал над своим трудом, и его это сильно выматывало. Во время работы над системой элементов Менделеев однажды заснул. Проснувшись, он понял, что не закончил таблицу, и скорее продолжил заполнение пустых ячеек. Его знакомый, некий Иностранцев, университетский педагог, решил, что таблица Менделееву приснилась во сне и распространил данный слух среди своих студентов. Так и появилась данная гипотеза.

Известность

Химических элементов Менделеева является отображением созданного Дмитрием Ивановичем ещё в третьей четверти XIX века (1869 год) периодического закона. Именно в 1869 году на заседании русского химического сообщества было зачитано уведомление Менделеева о создании им определённой структуры. И в этом же году была выпущена книга «Основы химии», в которой впервые была опубликована периодическая система химических элементов Менделеева. А в книге «Естественная система элементов и использование её к указанию качеств неоткрытых элементов» Д. И. Менделеев впервые упомянул понятие «периодический закон».

Структура и правила размещения элементов

Первые шаги в создании периодического закона были сделаны Дмитрием Ивановичем еще в 1869-1871 годах, в то время он усиленно работал над установлением зависимости свойств данных элементов от массы их атома. Современный вариант представляет собой сведённые в двумерную таблицу элементы.

Положение элемента в таблице несёт определённый химический и физический смысл. По местонахождению элемента в таблице можно узнать, какая у него валентность, определить и другие химические особенности. Дмитрий Иванович пытался установить связь между элементами, как сходными между собой по свойствам, так и отличающимися.

В основу классификации известных на тот момент химических элементов он положил валентность и атомную массу. Сопоставляя относительные свойства элементов, Менделеев пытался найти закономерность, которая объединила бы все известные химические элементы в одну систему. Расположив их, основываясь на возрастании атомных масс, он всё-таки добился периодичности в каждом из рядов.

Дальнейшее развитие системы

Появившаяся в 1969 году таблица Менделеева ещё не раз дорабатывалась. С появлением благородных газов в 1930 годах получилось выявить новейшую зависимость элементов - не от массы, а от порядкового номера. Позднее удалось установить число протонов в атомных ядрах, и оказалось, что оно совпадает с порядковым номером элемента. Учёными XX века было изучено электронное Оказалось, что и оно влияет на периодичность. Это сильно меняло представления о свойствах элементов. Данный пункт был отражён в более поздних редакциях периодической системы Менделеева. Каждое новое открытие свойств и особенностей элементов органично вписывалось в таблицу.

Характеристики периодической системы Менделеева

Таблица Менделеева поделена на периоды (7 строк, расположенных горизонтально), которые, в свою очередь, подразделяются на большие и малые. Начинается период со щелочного металла, а заканчивается элементом с неметаллическими свойствами.
Вертикально таблица Дмитрия Ивановича поделена на группы (8 столбцов). Каждая из них в периодической системе состоит из двух подгрупп, а именно - главной и побочной. После долгих споров по предложению Д. И. Менделеева и его коллеги У. Рамзая было решено ввести так называемую нулевую группу. В неё входят инертные газы (неон, гелий, аргон, радон, ксенон, криптон). В 1911 году учёным Ф. Содди было предложено поместить в периодической системе и неразличимые элементы, так называемые изотопы, - для них были выделены отдельные ячейки.

Несмотря на верность и точность периодической системы, научное общество долго не хотело признавать данное открытие. Многие великие учёные высмеивали деятельность Д. И. Менделеева и считали, что невозможно предсказать свойства элемента, который ещё не был открыт. Но после того как предполагаемые химические элементы были открыты (а это были, например, скандий, галлий и германий), система Менделеева и его периодический закон стали науки химии.

Таблица в современности

Периодическая система элементов Менделеева - основа большинства химических и физических открытий, связанных с атомно-молекулярным учением. Современное понятие элемента сложилось как раз благодаря великому учёному. Появление периодической системы Менделеева внесло кардинальные изменения в представления о различных соединениях и простых веществах. Создание ученым периодической системы оказало огромное влияние на развитие химии и всех наук, смежных с ней.

Периодическая система химических элементов - это классификация химических элементов, созданная Д. И. Менделеевым на основе открытого им в 1869 г. периодического закона.

Д. И. Менделеев

Согласно современной формулировке этого закона, в непрерывном ряду элементов, расположенных в порядке возрастания величины положительного заряда ядер их атомов, периодически повторяются элементы со сходными свойствами.

Периодическая система химических элементов, представленная в виде таблицы, состоит из периодов, рядов и групп.

В начале каждого периода (за исключением первого) находится элементе ярко выраженными металлическими свойствами (щелочной металл).


Условные обозначения к цветной таблице: 1 - химический знак элемента; 2 - название; 3 - атомная масса (атомный вес); 4 - порядковый номер; 5 - распределение электронов по слоям.

По мере возрастания порядкового номера элемента, равного величине положительного заряда ядра его атома, постепенно ослабевают металлические и нарастают неметаллические свойства. Предпоследним элементом в каждом периоде является элемент с ярко выраженными неметаллическими свойствами (), а последним - инертный газ. В I периоде находятся 2 элемента, во II и III - по 8 элементов, в IV и V - по 18, в VI - 32 и в VII (не завершенном периоде) - 17 элементов.

Первые три периода называют малыми периодами, каждый из них состоит из одного горизонтального ряда; остальные - большими периодами, каждый из которых (исключая VII период) состоит из двух горизонтальных рядов - четного (верхнего) и нечетного (нижнего). В четных рядах больших периодов находятся только металлы. Свойства элементов в этих рядах с возрастанием порядкового номера изменяются слабо. Свойства элементов в нечетных рядах больших периодов меняются. В VI периоде за лантаном следуют 14 элементов, весьма сходных по химическим свойствам. Эти элементы, называемые лантаноидами, приведены отдельно под основной таблицей. Аналогично представлены в таблице и актиноиды - элементы, следующие за актинием.


В таблице имеется девять вертикальных групп. Номер группы, за редким исключением, равен высшей положительной валентности элементов данной группы. Каждая группа, исключая нулевую и восьмую, подразделяется на подгруппы. - главную (расположена правее) и побочную. В главных подгруппах с увеличением порядкового номера усиливаются металлические и ослабевают неметаллические свойства элементов.

Таким образом, химические и ряд физических свойств элементов определяются местом, которое занимает данный элемент в периодической системе.

Биогенные элементы, т. е. элементы, входящие в состав организмов и выполняющие в нем определенную биологическую роль, занимают верхнюю часть таблицы Менделеева. В голубой цвет окрашены клетки, занимаемые элементами, составляющими основную массу (более 99%) живого вещества, в розовый цвет - клетки, занимаемые микроэлементами (см.).

Периодическая система химических элементов является крупнейшим достижением современного естествознания и ярким выражением наиболее общих диалектических законов природы.

См. также , Атомный вес.

Периодическая система химических элементов - естественная классификация химических элементов, созданная Д. И. Менделеевым на основе открытого им в 1869 г. периодического закона.

В первоначальной формулировке периодический закон Д. И. Менделеева утверждал: свойства химических элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины атомных весов элементов. В дальнейшем с развитием учения о строении атома было показано, что более точной характеристикой каждого элемента является не атомный вес (см.), а величина положительного заряда ядра атома элемента, равная порядковому (атомному) номеру этого элемента в периодической системе Д. И. Менделеева. Число положительных зарядов ядра атома равно числу электронов, окружающих ядро атома, поскольку атомы в целом электронейтральны. В свете этих данных периодический закон формулируется так: свойства химических элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины положительного заряда ядер их атомов. Это значит, что в непрерывном ряду элементов, расположенных в порядке возрастания положительных зарядов ядер их атомов, будут периодически повторяться элементы со сходными свойствами.

Табличная форма периодической системы химических элементов представлена в ее современном виде. Она состоит из периодов, рядов и групп. Период представляет последовательный горизонтальный ряд элементов, расположенных в порядке возрастания положительного заряда ядер их атомов.

В начале каждого периода (за исключением первого) находится элемент с ярко выраженными металлическими свойствами (щелочной металл). Затем по мере увеличения порядкового номера постепенно ослабевают металлические и нарастают неметаллические свойства элементов. Предпоследним элементом в каждом периоде является элемент с ярко выраженными неметаллическими свойствами (галоген), а последним - инертный газ. I период состоит из двух элементов, роль щелочного металла и галогена здесь одновременно выполняет водород. II и III периоды включают по 8 элементов, названных Менделеевым типическими. IV и V периоды насчитывают по 18 элементов, VI-32. VII период еще не завершен и пополняется искусственно создаваемыми элементами; в настоящее время в этом периоде насчитывается 17 элементов. I, II и III периоды называют малыми, каждый из них состоит из одного горизонтального ряда, IV-VII- большими: они (за исключением VII) включают два горизонтальных ряда - четный (верхний) и нечетный (нижний). В четных рядах больших периодов находятся только металлы, и изменение свойств элементов в ряду слева направо выражено слабо.

В нечетных рядах больших периодов свойства элементов в ряду изменяются так же, как свойства типических элементов. В четном ряду VI периода после лантана следует 14 элементов [называемых лантанидами (см.), лантаноидами, редкоземельными элементами], сходных по химическим свойствам с лантаном и между собой. Перечень их приводится отдельно под таблицей.

Отдельно выписаны и приведены под таблицей элементы, следующие за актинием- актиниды (актиноиды).

В периодической системе химических элементов по вертикалям расположено девять групп. Номер группы равен высшей положительной валентности (см.) элементов этой группы. Исключение составляют фтор (бывает только отрицательно одновалентным) и бром (не бывает семивалентным); кроме того, медь, серебро, золото могут проявлять валентность больше +1 (Cu-1 и 2, Ag и Au-1 и 3), а из элементов VIII группы валентностью +8 обладают только осмий и рутений. Каждая группа, за исключением восьмой и нулевой, делится на две подгруппы: главную (расположена правее) и побочную. В главные подгруппы входят типические элементы и элементы больших периодов, в побочные - только элементы больших периодов и притом металлы.

По химическим свойствам элементы каждой подгруппы данной группы значительно отличаются друг от друга и только высшая положительная валентность одинакова для всех элементов данной группы. В главных подгруппах сверху вниз усиливаются металлические свойства элементов и ослабевают неметаллические (так, франций является элементом с наиболее ярко выраженными металлическими свойствами, а фтор - неметаллическими). Таким образом, место элемента в периодической системе Менделеева (порядковый номер) определяет его свойства, которые представляют собой среднее из свойств соседних элементов по вертикали и горизонтали.

Некоторые группы элементов носят особые названия. Так, элементы главных подгрупп I группы называют щелочными металлами, II группы - щелочноземельными металлами, VII группы - галогенами, элементы, расположенные за ураном,- трансурановыми. Элементы, которые входят в состав организмов, принимают участие в процессах обмена веществ и обладают явно выраженной биологической ролью, называют биогенными элементами. Все они занимают верхнюю часть таблицы Д. И. Менделеева. Это в первую очередь О, С, Н, N, Са, Р, К, S, Na, Cl, Mg и Fe, составляющие основную массу живого вещества (более 99%). Места, занимаемые этими элементами в периодической системе, окрашены в светло-голубой цвет. Биогенные элементы, которых в организме очень мало (от 10 -3 до 10 -14 %), называют микроэлементами (см.). В клетках периодической системы, окрашенных в желтый цвет, помещены микроэлементы, жизненно важное значение которых для человека доказано.

Согласно теории строения атомов (см. Атом) химические свойства элементов зависят в основном от числа электронов на внешней электронной оболочке. Периодическое изменение свойств элементов с увеличением положительного заряда атомных ядер объясняется периодическим повторением строения наружной электронной оболочки (энергетического уровня) атомов.

В малых периодах с увеличением положительного заряда ядра возрастает число электронов на внешней оболочке от 1 до 2 в I периоде и от 1 до 8 во II и III периодах. Отсюда изменение свойств элементов в периоде от щелочного металла до инертного газа. Внешняя электронная оболочка, содержащая 8 электронов, является завершенной и энергетически устойчивой (элементы нулевой группы химически инертны).

В больших периодах в четных рядах с ростом положительного заряда ядер число электронов на внешней оболочке остается постоянным (1 или 2) и идет заполнение электронами второй снаружи оболочки. Отсюда медленное изменение свойств элементов в четных рядах. В нечетных рядах больших периодов с увеличением заряда ядер идет заполнение электронами внешней оболочки (от 1 до 8) и свойства элементов изменяются так, как и у типических элементов.

Число электронных оболочек в атоме равно номеру периода. Атомы элементов главных подгрупп имеют на внешних оболочках число электронов, равное номеру группы. Атомы элементов побочных подгрупп содержат на внешних оболочках один или два электрона. Этим объясняется различие в свойствах элементов главной и побочной подгрупп. Номер группы указывает возможное число электронов, которые могут участвовать в образовании химических (валентных) связей (см. Молекула), поэтому такие электроны называют валентными. У элементов побочных подгрупп валентными являются не только электроны внешних оболочек, но и предпоследних. Число и строение электронных оболочек указано в прилагаемой периодической системе химических элементов.

Периодический закон Д. И. Менделеева и основанная на нем система имеют исключительно большое значение в науке и практике. Периодический закон и система явились основой для открытия новых химических элементов, точного определения их атомных весов, развития учения о строении атомов, установления геохимических законов распределения элементов в земной коре и развития современных представлений о живом веществе, состав которого и связанные с ним закономерности находятся в соответствии с периодической системой. Биологическая активность элементов и их содержание в организме также во многом определяются местом, которое они занимают в периодической системе Менделеева. Так, с увеличением порядкового номера в ряде групп возрастает токсичность элементов и уменьшается их содержание в организме. Периодический закон является ярким выражением наиболее общих диалектических законов развития природы.