Реактивное движение и ракета. Проектная работа на тему "ракеты

Принцип реактивного движения находит широкое практическое применение в авиации и космонавтике. В космическом пространстве нет среды, с которой тело могло бы взаимодействовать и тем самым изменять направление и модуль своей скорости. Поэтому для космических полётов могут быть использованы только реактивные летательные аппараты, т.е. ракеты.

Кто же придумал ракету?

Ракета была известна давно. Очевидно, она появилась много веков назад на Востоке, возможно, в Древнем Китае - родине пороха. Ракеты (см. ниже) использовали во время народных празднеств, устраивали фейерверки, зажигали в небе огненные дожди, фонтаны, колёса.

Древнекитайская ракета:

1 - ствол-направляющая;

2 - пороховой заряд орудия;

3 - пыж;

4 - ракета;

5 - пороховой заряд ракеты.

Ракеты применяли в военном деле. Долгое время ракета была одновременно и оружием, и игрушкой. При Петре I была создана и применялась однофунтовая сигнальная ракета образца 1717 года (см. ниже), остававшаяся на вооружении до конца XIX века. Она поднималась на высоту до \(1\) километра.

Некоторые изобретатели предлагали использовать ракету для воздухоплавания. Научившись подниматься на воздушных шарах, люди были беспомощны в воздухе. Первым, кто предложил использовать ракету как средство передвижения, был российский изобретатель, революционер Николай Иванович Кибальчич, осуждённый на казнь за покушение на царя.

За десять дней до смерти в Петропавловской крепости он завершил работу над своим изобретением и передал адвокату не просьбу о помиловании или жалобу, а «Проект воздухоплавательного прибора» (чертежи и математические расчёты ракеты). Именно ракета, считал он, откроет человеку путь в небо.

Про свой аппарат (см. выше) он написал: «Если цилиндр поставлен закрытым дном кверху, то при известном давлении газов... цилиндр должен подняться наверх».

Какая же сила применима к воздухоплаванию? - ставит вопрос Н.И. Кибальчич и отвечает. - Такой силой, по моему мнению, является медленно горящие взрывчатые вещества... Применить энергию газов, образующихся при воспламенении взрывчатых веществ к какой-либо продолжительной работе возможно только под тем условием, если та громадная энергия, которая образуется при горении взрывчатых веществ, будет образовываться не сразу, а в течение более или менее продолжительного промежутка времени. Если мы возьмём фунт зернистого пороху, вспыхивающего при зажигании мгновенно, спрессуем его под большим давлением в форму цилиндра, то увидим, что горение не сразу охватит цилиндр, а будет распространяться довольно медленно от одного конца к другому и с определённой скоростью... На этом свойстве прессованного пороха основано устройство боевых ракет.

Изобретатель имеет здесь в виду старинные (первой половины XIX века) ракеты, которые перекидывали 50-килограммовые бомбы на \(2-3\) километра при заряде в \(20\) кг. Н.И. Кибальчич вполне ясно и совершенно правильно представлял себе механизм действия ракеты.

Конструкцию космической ракеты с жидкостным реактивным двигателем впервые предложил в \(1903\) году русский учёный Константин Эдуардович Циолковский.

Он разработал теорию движения космических ракет и вывел формулу для расчёта их скорости.

Рассмотрим вопрос об устройстве и запуске так называемых ракет-носителей, т.е. ракет, предназначенных для вывода в космос искусственных спутников Земли, космических кораблей, автоматических межпланетных станций и других полезных грузов.

В любой ракете, независимо от её конструкции, всегда имеется оболочка и топливо с окислителем. Оболочка ракеты включает в себя полезный груз (в данном случае это космический корабль), приборный отсек и двигатель (камера сгорания, насосы и пр.).

Основную массу ракеты составляет топливо с окислителем (окислитель нужен для поддержания горения топлива, поскольку в космосе нет кислорода).

Топливо и окислитель с помощью насосов подаются в камеру сгорания. Топливо, сгорая, превращается в газ высокой температуры и высокого давления, который мощной струёй устремляется наружу через раструб специальной формы, называемый соплом. Назначение сопла состоит в том, чтобы повысить скорость струи.

С какой целью увеличивают скорость выхода струи газа? Дело в том, что от этой скорости зависит скорость ракеты. Это можно показать с помощью закона сохранения импульса.

Поскольку до старта импульс ракеты был равен нулю, то по закону сохранения суммарный импульс движущейся оболочки и выбрасываемого из неё газа тоже должен быть равен нулю. Отсюда следует, что импульс оболочки и направленный противоположно ему импульс струи газа должны быть равны по модулю:

p оболочки = p газа

m оболочки v оболочки = m газа v газа.

v оболочки = m газа v газа m оболочки.

Значит, чем с большей скоростью вырывается газ из сопла или чем меньше масса оболочки ракеты, тем больше будет скорость оболочки ракеты.

В практике космических полётов обычно используют многоступенчатые ракеты, развивающие гораздо большие скорости и предназначенные для более дальних полётов, чем одноступенчатые.

Приложение

Реактивное движение используется многими моллюсками – осьминогами, кальмарами, каракатицами. Например, морской моллюск-гребешок движется вперед за счет реактивной силы струи воды, выброшенной из раковины при резком сжатии ее створок. Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны. Сальпа - морское животное с прозрачным телом, при движении принимает воду через переднее отверстие, причем вода попадает в широкую полость, внутри которой по диагонали натянуты жабры. Как только животное сделает большой глоток воды, отверстие закрывается. Тогда продольные и поперечные мускулы сальпы сокращаются, все тело сжимается, и вода через заднее отверстие выталкивается наружу. Реакция вытекающей струи толкает сальпу вперед. Наибольший интерес представляет реактивный двигатель кальмара. Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Кальмары достигли высшего совершенства в реактивной навигации. У них даже тело своими внешними формами копирует ракету (или лучше сказать – ракета копирует кальмара, поскольку ему принадлежит в этом деле бесспорный приоритет). При медленном перемещении кальмар пользуется большим ромбовидным плавником, периодически изгибающимся. Для быстрого броска он использует реактивный двигатель. Мышечная ткань – мантия окружает тело моллюска со всех сторон, объем ее полости составляет почти половину объема тела кальмара. Животное засасывает воду внутрь мантийной полости, а затем резко выбрасывает струю воды через узкое сопло и с большой скоростью двигается толчками назад. При этом все десять щупалец кальмара собираются в узел над головой, и он приобретает обтекаемую форму. Сопло снабжено специальным клапаном, и мышцы могут его поворачивать, изменяя направление движения. Двигатель кальмара очень экономичен, он способен развивать скорость до 60 – 70 км/ч. (Некоторые исследователи считают, что даже до 150 км/ч!) Недаром кальмара называют “живой торпедой”. Изгибая сложенные пучком щупальца вправо, влево, вверх или вниз, кальмар поворачивает в ту или другую сторону. Поскольку такой руль по сравнению с самим животным имеет очень большие размеры, то достаточно его незначительного движения, чтобы кальмар, даже на полном ходу, легко мог увернуться от столкновения с препятствием. Резкий поворот руля – и пловец мчится уже в обратную сторону. Вот изогнул он конец воронки назад и скользит теперь головой вперед. Выгнул ее вправо – и реактивный толчок отбросил его влево. Но когда нужно плыть быстро, воронка всегда торчит прямо между щупальцами, и кальмар мчится хвостом вперед, как бежал бы рак – скороход, наделенный резвостью скакуна. Если спешить не нужно, кальмары и каракатицы плавают, ундулируя плавниками, – миниатюрные волны пробегают по ним спереди назад, и животное грациозно скользит, изредка подталкивая себя также и струей воды, выброшенной из-под мантии. Тогда хорошо заметны отдельные толчки, которые получает моллюск в момент извержения водяных струй. Некоторые головоногие могут развивать скорость до пятидесяти пяти километров в час. Прямых измерений, кажется, никто не производил, но об этом можно судить по скорости и дальности полета летающих кальмаров. И такие, оказывается, есть таланты в родне у спрутов! Лучший пилот среди моллюсков – кальмар стенотевтис. Английские моряки называют его – флайинг-сквид («летающий кальмар»). Это небольшое животное размером с селедку. Он преследует рыб с такой стремительностью, что нередко выскакивает из воды, стрелой проносясь над ее поверхностью. К этой уловке он прибегает и спасая свою жизнь от хищников – тунцов и макрелей. Развив в воде максимальную реактивную тягу, кальмар-пилот стартует в воздух и пролетает над волнами более пятидесяти метров. Апогей полета живой ракеты лежит так высоко над водой, что летающие кальмары нередко попадают на палубы океанских судов. Четыре-пять метров – не рекордная высота, на которую поднимаются в небо кальмары. Иногда они взлетают еще выше.

Английский исследователь моллюсков доктор Рис описал в научной статье кальмара (длиной всего в 16 сантиметров), который, пролетев по воздуху изрядное расстояние, упал на мостик яхты, возвышавшийся над водой почти на семь метров.

Случается, что на корабль сверкающим каскадом обрушивается множество летающих кальмаров. Античный писатель Требиус Нигер поведал однажды печальную историю о корабле, который будто бы даже затонул под тяжестью летающих кальмаров, упавших на его палубу. Кальмары могут взлетать и без разгона.

Осьминоги тоже умеют летать. Французский натуралист Жан Верани видел, как обычный осьминог разогнался в аквариуме и вдруг задом вперед неожиданно выскочил из воды. Описав в воздухе дугу длиной метров в пять, он плюхнулся обратно в аквариум. Набирая скорость для прыжка, осьминог двигался не только за счет реактивной тяги, но и греб щупальцами. Мешковатые осьминоги плавают, конечно, хуже кальмаров, но в критические минуты и они могут показать рекордный для лучших спринтеров класс. Сотрудники Калифорнийского аквариума пытались сфотографировать осьминога, атакующего краба. Спрут бросался на добычу с такой быстротой, что на пленке, даже при съемке на самых больших скоростях, всегда оказывались смазки. Значит, бросок длился сотые доли секунды! Обычно же осьминоги плавают сравнительно медленно. Джозеф Сайнл, изучавший миграции спрутов, подсчитал: осьминог размером в полметра плывет по морю со средней скоростью около пятнадцати километров в час. Каждая струя воды, выброшенная из воронки, толкает его вперед (вернее, назад, так как осьминог плывет задом наперед) на два – два с половиной метра.

Реактивное движение можно встретить и в мире растений. Например, созревшие плоды “бешеного огурца” при самом легком прикосновении отскакивают от плодоножки, а из образовавшегося отверстия с силой выбрасывается клейкая жидкость с семенами. Сам огурец при этом отлетает в противоположном направлении до 12 м.

Зная закон сохранения импульса можно изменять собственную скорость перемещения в открытом пространстве. Если вы находитесь в лодке и у вас есть несколько тяжёлых камней, то бросая камни в определённую сторону, вы будете двигаться в противоположном направлении. То же самое будет и в космическом пространстве, но там для этого используют реактивные двигатели.

Каждый знает, что выстрел из ружья сопровождается отдачей. Если бы вес пули равнялся бы весу ружья, они бы разлетелись с одинаковой скоростью. Отдача происходит потому, что отбрасываемая масса газов создаёт реактивную силу, благодаря которой может быть обеспечено движение, как в воздухе, так и в безвоздушном пространстве. И чем больше масса и скорость истекающих газов, тем большую силу отдачи ощущает наше плечо, чем сильнее реакция ружья, тем больше реактивная сила.

Применение реактивного движения в технике

В течение многих веков человечество мечтало о космических полётах. Писатели-фантасты предлагали самые разные средства для достижения этой цели. В XVII веке появился рассказ французского писателя Сирано де Бержерака о полёте на Луну. Герой этого рассказа добрался до Луны в железной повозке, над которой он всё время подбрасывал сильный магнит. Притягиваясь к нему, повозка всё выше поднималась над Землёй, пока не достигла Луны. А барон Мюнхгаузен рассказывал, что забрался на Луну по стеблю боба.

В конце первого тысячелетия нашей эры в Китае изобрели реактивное движение, которое приводило в действие ракеты - бамбуковые трубки, начиненные порохом, они также использовались как забава. Один из первых проектов автомобилей был также с реактивным двигателем и принадлежал этот проект Ньютону

Автором первого в мире проекта реактивного летательного аппарата, предназначенного для полета человека, был русский революционер – народоволец Н.И. Кибальчич. Его казнили 3 апреля 1881 г. за участие в покушении на императора Александра II. Свой проект он разработал в тюрьме после вынесения смертного приговора. Кибальчич писал: “Находясь в заключении, за несколько дней до своей смерти я пишу этот проект. Я верю в осуществимость моей идеи, и эта вера поддерживает меня в моем ужасном положении…Я спокойно встречу смерть, зная, что моя идея не погибнет вместе со мною”.

Первым человеком, который совершил полёт в космическом пространстве, был гражданин Советского Союза Юрий Алексеевич Гагарин. 12 апреля 1961 г. Он облетел земной шар на корабле-спутнике «Восток»

Советские ракеты первыми достигли Луны, облетели Луну и сфотографировали её невидимую с Земли сторону, первыми достигли планету Венера и доставили на её поверхность научные приборы. В 1986 г. Два советских космических корабля «Вега-1» и «Вега-2» с близкого расстояния исследовали комету Галлея, приближающуюся к Солнцу один раз в 76 лет.

Рассмотрим несколько примеров, подтверждающих справедливость закона сохранения импульса.

Наверняка многие из вас наблюдали, как приходит в движение надутый воздухом воздушный шарик, если развязать нить, стягивающую его отверстие.

Объяснить это явление можно с помощью закона сохранения импульса.

Пока отверстие шарика завязано, шарик с находящимся внутри него сжатым воздухом покоится, и его импульс равен нулю.

При открытом отверстии из него с довольно большой скоростью вырывается струя сжатого воздуха. Движущийся воздух обладает некоторым импульсом, направленным в сторону его движения.

Согласно действующему в природе закону сохранения импульса, суммарный импульс системы, состоящей из двух тел - шарика и воздуха в нём, должен остаться таким же, каким был до начала истечения воздуха, т. е. равным нулю. Поэтому шарик начинает двигаться в противоположную струе воздуха сторону с такой скоростью, что его импульс равен по модулю импульсу воздушной струи. Векторы импульсов шарика и воздуха направлены в противоположные стороны. В результате суммарный импульс взаимодействующих тел остаётся равным нулю.

Движение шарика является примером реактивного движения. Реактивное движение происходит за счёт того, что от тела отделяется и движется какая-то его часть, в результате чего само тело приобретает противоположно направленный импульс.

На принципе реактивного движения основано вращение устройства, называемого сегне-ровым колесом (рис. 46). Вода, вытекающая из сосуда конической формы через сообщающуюся с ним изогнутую трубку, вращает сосуд в направлении, противоположном скорости воды в струях. Следовательно, реактивное действие оказывает не только струя газа, но и струя жидкости.

Рис. 46. Демонстрация реактивного движения с помощью сегнерова колеса

Реактивное движение используют для своего перемещения и некоторые живые существа, например осьминоги, кальмары, каракатицы и другие головоногие моллюски (рис. 47). Движутся они благодаря тому, что всасывают, а затем с силой выталкивают из себя воду. Существует даже разновидность кальмаров, которые с помощью своих «реактивных двигателей» могут не только плавать в воде, но и на короткое время вылетать из неё, чтобы поскорее настичь добычу или спастись от врагов.

Рис. 47. Реактивное движение для своего перемещения используют головоногие моллюски: а - каракатица; б - кальмар; в - осьминог

Вы знаете, что принцип реактивного движения находит широкое практическое применение в авиации и космонавтике. В космическом пространстве нет среды, с которой тело могло бы взаимодействовать и тем самым изменять направление и модуль своей скорости. Поэтому для космических полётов могут быть использованы только реактивные летательные аппараты, т. е. ракеты.

Старт ракеты-носителя с космическим кораблём "Союз"

Рассмотрим вопрос об устройстве и запуске так называемых ракет-носителей, т. е. ракет, предназначенных для вывода в космос искусственных спутников Земли, космических кораблей, автоматических межпланетных станций и других полезных грузов.

В любой ракете, независимо от её конструкции, всегда имеется оболочка и топливо с окислителем. На рисунке 48 изображена ракета в разрезе. Мы видим, что оболочка ракеты включает в себя полезный груз (в данном случае это космический корабль 1), приборный отсек 2 и двигатель (камера сгорания 6, насосы 5 и пр.).

Рис. 48. Схема ракеты

Основную массу ракеты составляет топливо 4 с окислителем 3 (окислитель нужен для поддержания горения топлива, поскольку в космосе нет кислорода).

Топливо и окислитель с помощью насосов подаются в камеру сгорания. Топливо, сгорая, превращается в газ высокой температуры и высокого давления, который мощной струёй устремляется наружу через раструб специальной формы, называемый соплом 7. Назначение сопла состоит в том, чтобы повысить скорость струи.

С какой целью увеличивают скорость выхода струи газа? Дело в том, что от этой скорости зависит скорость ракеты. Это можно показать с помощью закона сохранения импульса.

Поскольку до старта импульс ракеты был равен нулю, то по закону сохранения суммарный импульс движущейся оболочки и выбрасываемого из неё газа тоже должен быть равен нулю. Отсюда следует, что импульс оболочки и направленный противоположно ему импульс струи газа должны быть равны по модулю. Значит, чем с большей скоростью вырывается газ из сопла, тем больше будет скорость оболочки ракеты.

Помимо скорости истечения газа существуют и другие факторы, от которых зависит скорость движения ракеты.

Мы рассмотрели устройство и принцип действия одноступенчатой ракеты, где под ступенью подразумевается та часть, которая содержит баки с горючим и окислителем и двигатель. В практике космических полётов обычно используют многоступенчатые ракеты, развивающие гораздо большие скорости и предназначенные для более дальних полётов, чем одноступенчатые.

На рисунке 49 показана схема трёхступенчатой ракеты. После того как топливо и окислитель первой ступени будут полностью израсходованы, эта ступень автоматически отбрасывается и в действие вступает двигатель второй ступени.

Рис. 49. Схема трёхступенчатой ракеты

Уменьшение общей массы ракеты путем отбрасывания уже ненужной ступени позволяет сэкономить топливо и окислитель и увеличить скорость ракеты. Затем таким же образом отбрасывается вторая ступень.

Если возвращение космического корабля на Землю или его посадка на какую-либо другую планету не планируется, то третья ступень, как и две первых, используется для увеличения скорости ракеты. Если же корабль должен совершить посадку, то она используется для торможения корабля перед посадкой. При этом ракету разворачивают на 180°, чтобы сопло оказалось впереди. Тогда вырывающийся из ракеты газ сообщает ей импульс, направленный против скорости её движения, что приводит к уменьшению скорости и даёт возможность осуществить посадку.

Константин Эдуардович Циолковский(1857-1935)
Российский учёный и изобретатель в области аэродинамики, ракетодинамики, теории самолёта и дирижабля. Основоположник теоретической космонавтики

Идея использования ракет для космических полётов была выдвинута в начале XX в. русским учёным и изобретателем Константином Эдуардовичем Циолковским. Циолковский разработал теорию движения ракет, вывел формулу для расчёта их скорости, был первым, кто предложил использовать многоступенчатые ракеты.

Полвека спустя идея Циолковского была развита и реализована советскими учёными под руководством Сергея Павловича Королёва.

Сергей Павлович Королев (1907-1966)
Советский учёный, конструктор ракетно-космических систем. Основоположник практической космонавтики

Вопросы

  1. Основываясь на законе сохранения импульса, объясните, почему воздушный шарик движется противоположно струе выходящего из него сжатого воздуха.
  2. Приведите примеры реактивного движения тел.
  3. Каково назначение ракет? Расскажите об устройстве и принципе действия ракеты.
  4. От чего зависит скорость ракеты?
  5. В чём заключается преимущество многоступенчатых ракет перед одноступенчатыми?
  6. Как осуществляется посадка космического корабля?

Упражнение 21

  1. С лодки, движущейся со скоростью 2 м/с, человек бросает весло массой 5 кг с горизонтальной скоростью 8 м/с противоположно движению лодки. С какой скоростью стала двигаться лодка после броска, если её масса вместе с человеком равна 200 кг?
  2. Какую скорость получит модель ракеты, если масса её оболочки равна 300 г, масса пороха в ней 100 г, а газы вырываются из сопла со скоростью 100 м/с? (Считайте истечение газа из сопла мгновенным.)
  3. На каком оборудовании и как проводится опыт, изображённый на рисунке 50? Какое физическое явление в данном случае демонстрируется, в чём оно заключается и какой физический закон лежит в основе этого явления?

    Примечание: резиновая трубка была расположена вертикально до тех пор, пока через неё не начали пропускать воду.

  4. Проделайте опыт, изображённый на рисунке 50. Когда резиновая трубка максимально отклонится от вертикали, перестаньте лить воду в воронку. Пока оставшаяся в трубке вода вытекает, понаблюдайте, как будет меняться: а) дальность полёта воды в струе (относительно отверстия в стеклянной трубке); б) положение резиновой трубки. Объясните оба изменения.

Рис. 50

МЕХАНИКА ТЕЛ ПЕРЕМЕННОЙ МАССЫ И ТЕОРИЯ РЕАКТИВНОГО ДВИЖЕНИЯ В ДОВОЕННЫЙ ПЕРИОД

В советское время идеи Мещерского и Циолковского получили широкое развитие. В работах Мещерского дальнейшее развитие получила его идея «отображения» движения, высказанная им еще в 1897 г. В 1918 г. он опубликовал статью «Задача из динамики переменных масс», в которой рассматривается движение механической системы из п точек, лежащих на прямой линии, массы которых изменяются с течением времени по некоторому закону. При этом точки системы взаимно притягиваются или отталкиваются силами, пропорциональными произведениям масс рассматриваемых точек на расстояние между ними. К.Э. Циолковский свои исследования по ракетной технике и межпланетным сообщениям развил в ряде работ, относящихся к началу 20-х годов. В брошюре «Вне Земли», изданной в 1920 г., он ввел понятие о составной (состоящей из двух вагонов) ракете, описал взлет с Земли, Луны, астероида и спуск на Землю. В 1926- 1929 гг. Циолковский предложил для достижения космических скоростей использовать многоступенчатую ракету. В 1929 г. в Калуге появилась его работа «Космические ракетные поезда», в которой выдвинута идея, что межпланетный корабль должен представлять собой ряд последовательно соединенных ракет, отделяющихся одна от другой по мере израсходования горючего. Циолковский создал теорию многоступенчатых ракет, математически обосновал возможность достижения космических скоростей на ракете. Идея полета на ракете в мировое пространство является величайшим достижением Циолковского. Ему принадлежит также идея создания реактивного самолета для полета в высоких слоях атмосферы и с такими большими скоростями, которые не могут быть достигнуты самолетами с поршневыми двигателями. Эта идея была изложена им в работе «Реактивный аэроплан», изданной в 1930 г. в Калуге. Придавая большое значение экспериментальным исследованиям, Циолковский в 1927 г. разработал схему лабораторной установки для испытания реактивных двигателей («Космическая ракета. Опытная подготовка», 1929).

Помимо указанных работ были изданы с некоторыми дополнениями и изменениями результаты исследований, изложенные в его трудах 1903-1912 гг. Мы имеем в виду следующие две работы: «Ракета и космическое пространство» (1924), «Исследование мировых пространств реактивными приборами» (1926).

Дав научное обоснование теории полета ракет, разработав теорию прямолинейного реактивного движения тел переменной массы, К.Э. Циолковский стал признанным основоположником ракетодинамики.

Работы Циолковского оказали большое влияние на развитие исследований по ракетодинамике в СССР. Они открыли путь исследованиям Ф.А. Цандера (1887-1933) и Ю.В. Кондратюка (1897-1942), которые рассмотрели ряд важных задач ракетодинамики и теории реактивных двигателей. Цандер начал заниматься вопросами межпланетных сообщений еще в студенческие годы (с 1908 г.). Он исследовал в 1917 г. задачу перелета на другие планеты при помощи ракет и разработал проект межпланетной ракеты с крыльями и реактивного двигателя для нее.

Первая публикация исследований Ф.А. Цандера относится к 1924 г., когда в журнале «Техника и жизнь» появилась его статья «Перелеты на другие планеты».

В 1932 г. была издана его капитальная монография «Проблема полета при помощи реактивных аппаратов». Затем были опубликованы результаты исследования Цандером ракетных двигателей на жидком топливе. Несколько позднее, чем Цандер, примерно в 1916 г., теорией реактивного движения начал заниматься Ю.В. Кондратюк. В 1929 г. он опубликовал работу «Завоевание межпланетных пространств».

Под влиянием исследований пионеров ракетной техники в СССР уже в 20-х годах стали создаваться группы и организации по изучению различных вопросов реактивного движения. Было организовано Общество межпланетных сообщений.

В 1929 г. в Ленинграде была создана Газодинамическая лаборатория (ГДЛ). Особенно важное значение для развития механики переменной массы имели группы по изучению реактивного движения (ГИРД) в Москве и в Ленинграде, созданные в 1931 г. Центральным советом Осоавиахима СССР. В 1933 г. был организован Реактивный научно-исследовательский институт (РНИИ). В этих организациях начинали свою работу многие инженеры, конструкторы, ставшие впоследствии крупными теоретиками реактивного движения, выдающимися конструкторами космических кораблей.

В московской группе по изучению реактивного движения работал С.П. Королев (1906-1966), который впоследствии прославился как выдающийся конструктор и ученый в области ракетной и космической техники. В 1930 г. С.П. Королев окончил факультет аэромеханики Высшего технического училища и школу летчиков. Еще студентом он стал автором нескольких оригинальных конструкций.

В 1929 г. Королев на Всесоюзных планерных состязаниях выступает в качестве одного из конструкторов планера «Коктебель». В 1930 г. он спроектировал и построил планер «Красная звезда», на котором впервые в истории авиации выполнялись фигуры высшего пилотажа. В том же 1930 г. он построил легкомоторный самолет «СК-4» и сам совершил свой первый полет. В 1935 г. Королев принимал участие во Всесоюзном слете планеристов в качестве летчика и конструктора двухместного планера «СК-9», на котором им впоследствии был установлен жидкостный ракетный двигатель.

СЕРГЕЙ ПАВЛОВИЧ КОРОЛЕВ (1906-1966)

Советский ученый в области ракетной и космической техники. С.П. Королев внес неоценимый вклад в развитие мировой науки и техники в области космонавтики

Познакомившись с К.Э. Циолковским и его основополагающими трудами, С.П. Королев, благодаря своему могучему таланту и неиссякаемой энергии, внес огромный вклад в дело освоения космического пространства - вклад, значение которого трудно переоценить.

В 1934 г. С.П. Королев издал книгу «Ракетный полет в стратосфере», которая сыграла важную роль в развитии ракетной техники в то время. «Книжка разумная, содержательная и полезная», - писал о ней К.Э. Циолковский.

В годы Великой Отечественной войны Королев работал над установкой жидкостных ракетных ускорителей на истребителях и пикирующих бомбардировщиках, принимал участие в испытательных полетах.

Слава С.П. Королева, крупнейшего ученого и конструктора в области ракетной техники и исследования космического пространства, достигла своего апогея после войны. Мы рассмотрим его творчество этого периода в следующем разделе главы.

С оформлением организаций энтузиастов ракетного дела появилась потребность в публикации исследований в области реактивного движения.

Реактивная секция Стратосферного комитета Центрального совета Осоавиахима СССР начиная с 1935 г. стала издавать сборник «Реактивное движение», посвященный проблемам движения тел переменной массы, а также проблемам реактивного полета. Основное внимание уделялось исследованию вертикального движения ракет, движению точки переменной массы при различных гипотезах относительно отделения и присоединения частиц, динамике реактивного самолета. Так, например, В.П. Ветчинкин в работе «Вертикальное движение ракеты» (1935) исследовал вертикальное движение точки переменной массы в среде, сопротивление которой изменяется по квадратичному закону, а плотность среды изменяется с высотой. Для решения полученного движения ракеты был применен метод численного интегрирования. М.К. Тихонравов в работе «Формула Циолковского» (1936) проанализировал основное уравнение движения точки переменной массы при различных предположениях относительно характера отделения и присоединения частиц. Он показал, что изменение скорости точки, происходящее при отделении частиц, можно определить, применяя закон сохранения количества движения и закон сохранения кинетической энергии.

Интересные результаты в области механики переменных масс были получены при решении астрономических проблем. Здесь основным предметом исследований была задача двух тел. Г.Н. Дубошин в 1926-1930 гг. опубликовал серию статей «О форме траекторий в задаче о двух телах с переменными массами». Эта задача сводится к изучению интегро-дифференциального уравнения, решение которого выражается с помощью рядов, расположенных по степеням малого параметра. В.В. Степанов (1889-1950) в работе «О форме траекторий материальной точки в случае притяжения по закону Ньютона переменной массой» (1930) исследовал вопрос о форме орбиты точки постоянной массы, находящейся под действием переменной центральной массы. Он показал, что при некотором законе изменения массы притягивающей точки орбитой движущейся точки может быть любая кривая, обращенная вогнутостью к центру. А.С. Лапин в работе «Задача двух тел с переменными массами» (1944) исследовал случаи интегрируемости уравнений движения двух тел переменной массы, пользуясь методом замены переменных, введенным И.В. Мещерским. Таким образом, он свел задачу о движении точки переменной массы к задаче движения точки постоянной массы, воспользовавшись специальным прибором преобразования относительно радиуса-вектора и времени. Оказалось, что если массы взаимопритягивающихся по закону Ньютона материальных точек возрастают с течением времени, то задача о движении двух точек переменной массы сводится к изучению движения точки постоянной массы, притягивающейся по закону Ньютона и находящейся под действием силы сопротивления, равной произведению скорости на некоторую функцию времени.

Из книги Революция в физике автора де Бройль Луи

4. Аналитическая механика и теория Якоби Аналитическая механика, тесно связанная с именем великого Лагранжа, представляет собой совокупность методов, позволяющих быстро написать уравнения движения какой-либо системы, если известен набор параметров, знания которых

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

2. Кинетическая теория газов. Статистическая механика Если все материальные тела состоят из атомов, то естественно допустить, что в телах, находящихся в газообразном состоянии, частицы в среднем находятся достаточно далеко друг от друга и большую часть времени двигаются

Из книги Теория Вселенной автора Этэрнус

Из книги Эволюция физики автора Эйнштейн Альберт

Из книги Движение. Теплота автора Китайгородский Александр Исаакович

Из книги Астероидно-кометная опасность: вчера, сегодня, завтра автора Шустов Борис Михайлович

Из книги Гиперпространство автора Каку Мичио

Из книги Механика от античности до наших дней автора Григорьян Ашот Тигранович

Загадка движения До тех пор пока мы имеем дело с прямолинейным движением, мы далеки от понимания движений, наблюдаемых в природе. Мы должны рассмотреть криволинейные движения. Наш следующий шаг - определить законы, управляющие такими движениями. Это нелегкая задача.В

Из книги автора

II. Законы движения Разные точки зрения на движение Чемодан лежит на полке вагона. В то же время он движется вместе с поездом. Дом стоит на Земле, но вместе с ней и движется. Про одно и то же тело можно сказать: движется прямолинейно, покоится, вращается. И все суждения будут

Из книги автора

3.4. Неустойчивость движения АСЗ Движение АААА-астероидов совершается в такой области околосолнечного пространства, где оно не может быть устойчивым на длительных интервалах времени, если только какие-либо особые механизмы не поддерживают эту устойчивость. Долготы

Из книги автора

Новый ледниковый период Никто не знает, чем был вызван ледниковый период, предполагаемая продолжительность которого измеряется десятками или сотнями тысячелетий. Согласно одной теории к нему привели незначительные изменения в скорости вращения Земли, слишком мелкие и

Из книги автора

ПРОБЛЕМА УСТОЙЧИВОСТИ ДВИЖЕНИЯ Одним из крупнейших достижений механики в конце XIX в. явилось создание теории устойчивости движения систем с конечным числом степеней свободы. Основоположником этой теории был А.М. Ляпунов, которому наука обязана и многими другими важными

Из книги автора

МЕХАНИКА ТЕЛ ПЕРЕМЕННОЙ МАССЫ И ТЕОРИЯ РЕАКТИВНОГО ДВИЖЕНИЯ На рубеже XIX-XX вв. в России была создана новая область механики, первые стимулы к разработке которой возникли в теоретическом естествознании и которая приобрела исключительно важное значение в технике

Из книги автора

АНАЛИТИЧЕСКАЯ МЕХАНИКА СИСТЕМ ТОЧЕК И ТВЕРДЫХ ТЕЛ В ДОВОЕННЫЙ ПЕРИОД Более интенсивно, чем где бы то ни было за рубежом, в Советском Союзе развивались вариационные методы, велась работа по построению аналитической механики в новых переменных (групповых, неголономных). В

Из книги автора

МЕХАНИКА СПЛОШНОЙ СРЕДЫ В ДОВОЕННЫЙ ПЕРИОД В теории упругости выдающиеся результаты были получены при разработке общих методов интегрирования дифференциальных уравнений равновесия упругого тела, приближенных методов их решения и в исследовании многочисленных

Из книги автора

ПОСЛЕВОЕННЫЙ ПЕРИОД В годы Великой Отечественной войны работа советских механиков была подчинена главной цели - содействовать повышению боевой мощи вооруженных сил и решать самые насущные задачи, выдвигаемые промышленностью в условиях военного времени. Но сил

В небо взмывают многотонные космические корабли, а в морских водах ловко лавируют прозрачные, студенистые медузы, каракатицы и осьминоги - что между ними общего? Оказывается, в обоих случаях для перемещения используется принцип реактивного движения. Именно этой теме и посвящена наша сегодняшняя статья.

Заглянем в историю

Самые первые достоверные сведения о ракетах относятся к XIII веку. Они применялись индусами, китайцами, арабами и европейцами в боевых действиях как боевое и сигнальное оружие. Затем последовали целые столетия почти полного забвения этих устройств.

В России идея использования реактивного двигателя возродилась благодаря работам революционера-народовольца Николая Кибальчича. Сидя в царских застенках, он разработал российский проект реактивного двигателя и летательный аппарат для людей. Кибальчич был казнен, а его проект долгие годы пылился в архивах царской охранки.

Основные идеи, чертежи и расчеты этого талантливого и мужественного человека получили дальнейшее развитие в трудах К. Э. Циолковского, который предложил использовать их для межпланетных сообщений. С 1903 по1914 год он публикует ряд работ, где убедительно доказывает возможность использования реактивного движения для исследования космического пространства и обосновывает целесообразность использования многоступенчатых ракет.

Многие научные разработки Циолковского и по сей день применяются в ракетостроении.

Биологические ракеты

Как, вообще возникла идея перемещаться, отталкиваясь от собственной реактивной струи? Возможно, пристально наблюдая за морскими обитателями, жители прибрежных зон заметили, как это происходит в животном мире.

Например, морской гребешок перемещается за счет реактивной силы водной струи, выбрасываемой из раковины при быстром сжатии её створок. Но ему никогда не угнаться за самыми быстрыми пловцами - кальмарами.

Их ракетообразные тела мчатся хвостом вперед, выбрасывая из специальной воронки, запасенную воду. перемещаются по тому же принципу, выдавливая воду сокращением своего прозрачного купола.

Природа одарила «реактивным двигателем» и растение под названием «бешеный огурец». Когда его плоды полностью созревают, в ответ на самое слабое прикосновение, он выстреливает клейковину с семенами. Сам плод при этом отбрасывается в противоположную сторону на расстояние до 12 м!

Ни морским обитателям, ни растениям неведомы физические законы, лежащие в основе этого способа передвижения. Мы же попробуем в этом разобраться.

Физические основы принципа реактивного движения

Вначале обратимся к простейшему опыту. Надуем резиновый шарик и, не завязывая, отпустим в свободный полёт. Стремительное движение шарика будет продолжаться до тех пор, пока истекающая из него струя воздуха будет достаточно сильной.

Для объяснения результатов этого опыта нам следует обратиться к III закону , который утверждает, что два тела взаимодействуют с силами равными по величине и противоположными по направлению. Следовательно, сила, с которой шарик воздействует на вырывающиеся из него струи воздуха, равна силе, с которой воздух отталкивает от себя шарик.

Перенесем эти рассуждения на ракету. Эти устройства на огромной скорости выбрасывают некоторую часть своей массы, вследствие чего сами получают ускорение в противоположном направлении.

С точки зрения физики этот процесс чётко объясняется законом сохранения импульса. Импульс - это произведение массы тела на его скорость (mv) Пока ракета в покое, её скорость и импульс равны нулю. Если из неё выбрасывается реактивная струя, то оставшаяся часть по закону сохранения импульса должна приобрести такую скорость, чтобы суммарный импульс по-прежнему был равным нулю.

Обратимся к формулам:

m г v г + m р v р =0;

m г v г =- m р v р,

где m г v г импульс создаваемой струей газов, m р v р импульс, полученный ракетой.

Знак минус показывает, что направление движения ракеты и реактивной струи противоположны.

Устройство и принцип работы реактивного двигателя

В технике реактивные двигатели приводят в движение самолёты, ракеты, выводят на орбиты космические аппараты. В зависимости от назначения они имеют разное устройство. Но каждый из них имеет запас топлива, камеру для его сгорания и сопло, ускоряющее реактивную струю.

На межпланетных автоматических станциях оборудован также приборный отсек и кабины с системой жизнеобеспечения для космонавтов.

Современные космические ракеты это сложные, многоступенчатые летательные аппараты, использующие новейшие достижения инженерной мысли. После старта вначале сгорает топливо в нижней ступени, после чего она отделяется от ракеты, уменьшая её общую массу и увеличивая скорость.

Затем расходуется топливо во второй ступени и т. д. Наконец, летательный аппарат выводится на заданную траекторию и начинает свой самостоятельный полёт.

Немного помечтаем

Великий мечтатель и учёный К. Э. Циолковский подарил будущим поколениям уверенность в том, что реактивные двигатели позволят человечеству вырваться за пределы земной атмосферы и устремиться в космос. Его предвидение сбылось. Луна, и даже далёкие кометы успешно исследуются космическими аппаратами.

В космонавтике используют жидкостные реактивные двигатели. Используя в качестве топлива нефтепродукты, но скорости, которые удается получить с их помощью, недостаточны для очень дальних перелётов.

Возможно, вы, наши дорогие читатели, станете свидетелями полётов землян в другие галактики на аппаратах с ядерными, термоядерными или ионными реактивными двигателями.

Если это сообщение тебе пригодилось, буда рада видеть тебя