Ветры каких направлений. Скорость направления ветра

Сила ветра. Она определяется давлением, которое оказывает движущийся воздух на предметы и замеряется в кг/м 2 . Сила ветра (Р) зависит от скорости: Р = 0,25 V 2 . Сила ветра зависит еще и от плотности воздуха, При одинаковой скорости ветра у земной поверхности и в верхней тропосфере сила его вверху в 5 раз меньше, чем у поверхности. Обычно, чем меньше плотность, тем больше скорость ветра. Поэтому с высотой скорость ветра возрастает, к тому же этому способствует отсутствие трения о подстилающую поверхность.

Направление ветра. Это сторона света, откуда дует ветер. Указать это направление, значит, назвать либо точку горизонта, откуда дует ветер, либо азимут этого направления. В первом случае различают 8 основных румбов горизонта и 8 промежуточных румбов.

Также как и для скорости, различают мгновенное и сглаженное направление ветра. Для анализа результатов наблюдений за направлением ветра строят специальные диаграммы «розу ветров» , на которой показывается повторяемость направлений ветра за месяц, год.

Диаграмма "роза ветров" (повторяемость ветров разных направлений в днях)

Направление ветра и его сила зависит в первую очередь от барического градиента. Только сила барического градиента приводит воздух в движение и увеличивает его скорость. Все другие силы, проявляющиеся при движении воздуха, могут лишь тормозить движение и отклонять его направление от направления барического градиента. Но, если бы на воздух действовала только сила барического градиента, то движение воздуха было бы равномерно ускоренным. Хотя это ускорение не велико, но при длительном действии скорость ветра могла бы достичь больших значений. Силой, уравновешивающей силу барического градиента , является сила Кориолиса, отклоняющая сила вращения Земли. Она равна нулю на экваторе и имеет наибольшую величину на полюсах. Она относится только к движущимся телам. В определенных условиях сила Кориолиса может уравновесить силу барического градиента. Когда эти две силы уравновесятся, то воздух будет двигаться прямолинейно и равномерно без трения. Такие условия появляются на высоте более 1000 м (нет трения о подстилающую поверхность). Такой ветер называется геострофическим.

Геострофический ветер дует вдоль изобар, оставляя низкое давление в северном полушарии слева, в южном полушарии – справа.

Скорость геострофического ветра прямо пропорциональна величине барического градиента. Чем гуще изобары, тем сильнее ветер.

Если движение воздуха происходит без действия силы трения по криволинейным изобарам, то кроме силы градиента и силы Кориолиса, появляется еще и центробежная сила. Направлена центробежная сила по радиусу кривизны в сторону выпуклости траектории. Ветер, дующий по криволинейным траекториям без влияния трения называют градиентным ветром .

Градиентный ветер направлен, как и геострофический ветер, по изобарам, только по круговым. Отсюда, в циклоне (Z) ветер будет дуть против часовой стрелки, в антициклоне (Az) – по часовой стрелке. Это относится к северному полушарию. В южном полушарии направления ветра в циклоне и антициклоне изменяются на противоположные.

Литература

  1. Зубащенко Е.М. Региональная физическая география. Климаты Земли: учебно-методическое пособие. Часть 1. / Е.М. Зубащенко, В.И. Шмыков, А.Я. Немыкин, Н.В. Полякова. – Воронеж: ВГПУ, 2007. – 183 с.

Направление ветра в буквальном понимании в современной жизни играет настолько незначительную роль, что постепенно стало идиомой, образным выражением. Хотя до сих пор есть люди, знающие, как определить направление ветра, и регулярно пользующиеся этими навыками. Причем язык не повернется назвать их ретроградами: это поклонники активных видов спорта. Определять направление и силу ветра необходимо в парашютном, горнолыжном и парусном спорте, кайтбординге, виндсерфинге, планеризме и т.д.

Пусть спортсменам-экстремалам и не приходится определять направление ветра по флюгеру и/или розе ветров - в их распоряжении современные приборы и компьютерная техника. Но знания не бывают лишними, особенно когда от них зависит здоровье и даже жизнь. Навигаторы теряют сеть, смартчасы выходят из строя, зато карты, компасы и розы ветров по-прежнему, как и сотни лет назад, верой и правдой служат для определения направления ветра. Научитесь измерять скорость ветра простыми способами для собственной безопасности.

Чем измеряют параметры ветра? Приборы для определения направления ветра
Очевидно, и тем более ощутимо, что окружающая нас атмосфера не бывает неподвижной. Колебания воздуха или, говоря научным языком, циркуляция атмосферы, - это то, что мы привыкли называть ветром. Ветер, как движение, характеризуются вполне конкретными параметрами: направлением, силой и скоростью. Еще древние исследователи придумали простейшие устройства для измерений направления ветра, которые развивались и совершенствовались по мере технического прогресса:
Если направление ветра играет роль в вашей деятельности, есть смысл купить прибор для его измерения или сделать анемометр, флюгер или ветроуказатель самостоятельно. Так вы в любой момент сможете определить направление ветра, но этого еще не достаточно. Чтобы правильно трактовать показания приборов, нужно понимать основы определения направления ветра:

  1. Направление ветра, означающее, куда ветер дует, называется аэронавигационным . Это логичное, но не единственное измерение направления ветра.
  2. Метеорологическое направление ветра показывает, откуда дует ветер.
Метеорологическое и аэронавигационное направление ветра отличаются друг от друга с точностью до наоборот. Можно только представить себе, какими последствиями чревата путаница между ними!

Что такое роза ветров? Как определить направление ветра по розе ветров?
Движение воздуха зависит от географического положения и рельефа. Причем, если сила и скорость ветра меняются часто, то направление придерживается основных векторов, типичных для той или иной местности. Для записи направления ветра исследователи придумали наглядный график-диаграмму: так называемую розу ветров. Роза ветров похожа на розу не больше, чем на ромашку или просто многолучевую звезду. Но это совершенно не важно, если вы научитесь определять направление ветра по розе ветров, как делали это средневековые мореплаватели и продолжают делать современные строители, авиаторы и метеорологи:

  • Роза ветров показывает преобладающее направление ветра, или господствующий ветер. Этого не всегда достаточно для точных измерений, но необходимо для выбора траектории движения транспорта, расположения строительных объектов и просто принятия решения о покупке путевки на горнолыжный курорт.
  • Роза ветров состоит из осей координат, которые пересекаются между собой в точке, условно обозначающей «0». По мере отдаления от центра каждый ось размечена отрезками для измерения силы ветра. Четыре луча розы ветров указывают стороны света, восемь лучей – промежуточные значения и т.д.
  • Сила ветров, дующих в каждом из направлений в течение некоторого времени, отмечается на соответствующей оси. Затем крайние точки измерений соединяются между собой непрерывной линией, образующей фигуру неправильной формы. Глядя на нее, сразу становится видно, в каком направлении ветер дует чаще/сильнее.
Розы ветров разных местностей публикуются в открытых источниках, их можно найти в географических справочниках, на картах и в прогнозах погоды. Одна и та же роза ветров может отображать не только господствующее направление ветра, но и его продолжительность и/или сезонность. Не забывайте, что роза ветров показывает метеорологическое направление ветра!

Как определить направление ветра по карте? Ветер и атмосферное давление
Ветер всегда дует из области высокого давления в область низкого. Вращение Земли влияет на этот процесс и отклоняет направление ветра по спирали. Это отображается на климатических картах, по которым можно определить направление ветра над поверхностью суши и воды:

  • Днем вода холоднее суши, поэтому атмосферное давление над водой выше, и ветер дует от водоема на берег, параллельно прибою. Этот ветер называется морским бризом и на климатических картах его направление отображается в виде тонких стрелок, закругленной формы, направленных против часовой стрелки. Ночью вода остывает медленно, области высокого и низкого давления над сушей и водой меняются местами и ночной, или береговой бриз дует в сторону водоема (стрелки на карте по часовой стрелке).
  • Местные ветры в горах и на континентах реже меняют направление. Сезонные ветры муссоны сменяются всего дважды в год. Они подчиняются тому же принципу атмосферного давления, но с воды на сушу дуют летом, а с суши – зимой. Направление муссонов отражается на картах более широкими стрелками разного цвета (обычно синими и красными).
  • Постоянные ветры называются пассатами. Направление пассатов также зависит от давления, но в планетарных масштабах. Так, самое низкое давление наблюдается у экватора, поэтому ветры от широты около 30° устремляются туда, немного отклоняясь к западу. Давление у параллели 56° так же низко, как и у экватора, поэтому пассаты дуют и в сторону полюсов, отклоняясь к востоку. Все это можно увидеть на климатических картах и глобусах или просто запомнить, что западные ветры господствуют в умеренных широтах, а у экватора - восточные.
Заучите терминологию, чтобы никогда не путать, что восточные ветры дуют с востока, а не на восток, а западные ветры, соответственно, дуют с запада, а не на запад.

Как определить направление ветра по флюгеру и другим подручным материалам?
Зимние и летние туристы наверняка насмешили бы бывалых мореплавателей, если бы им довелось встретиться по воле фантастической временной петли. С одной стороны, мы можем пользоваться чудесами техники, умещающимися в смартфоны, часы и брелоки. С другой стороны, часто забываем посмотреть даже готовый прогноз погоды, не говоря уже о том, чтобы запастись климатической картой или хотя бы специальным приложением для определения направления ветра. На всякий подобный случай запомните простые способы определения примерного направления ветра в данный момент:

  1. Если вы или кто-то поблизости жарит шашлыки, обратите внимание на дым: он отклоняется в ту же сторону, в которую дует ветер, то есть показывает аэронавигационное направление ветра.
  2. Если барбекю не входит в планы, снимите с головы бандану или возьмите в руки легкое парео, выйдите на открытый участок пляжа или лесную поляну, и поднимите руку с этим импровизированным флагом. Если ветер достаточно сильный, он поднимет ткань и направит ее, как флюгер.
  3. Находясь на берегу, посмотрите на воду. Летним днем ветер почти наверняка будет направлен на сушу, и волны помогут в этом убедиться. Однако не путайте направление ветра с течением реки – они могут не совпадать.
Если ни дыма, ни водоема нет, вам останется использовать собственную голову в качестве навигационного прибора. Не спеша поворачивайте ее по кругу, пока шум ветра в обоих ушах не станет одинаковым. Скорее всего, в этот же момент ветер отбросит ваши волосы назад, потому что будет дуть прямо в лицо. Но воспользоваться этим методом можно только на открытом пространстве: на поляне, в поле, на холме. В замкнутых дворах, тоннелях и ущельях вступает в силу явление турбулентности, мешающее правильно определить направление ветра. Именно поэтому важно знать разные способы измерения ветра, чтобы всегда правильно определять его направление.

По «Авиационной метеорологии»

Тема 1 «Строение атмосферы» (1 час).

Различные классификации слоев атмосферы.

Международная стандартная атмосфера.

Различные классификации слоев атмосферы

1.Деление атмосферы на слои, в основу которой положено деление температуры по вертикали:

а).Тропосфера (0-11км).

Температура понижается с высотой (6,5* на 1000м): от 8*-10* (на полюсах) до 16*-18* (в тропиках).

Нижний слой тропосферы (пограничный, или слой трения) - до 1-1,5 км. В этом слое особенно сильно проявляется влияние земной поверхности.

Ниже нижнего слоя находится приземный слой (до 200 м).

б).Стратосфера (до высоты 50 км).

Температура в стратосфере постоянная (-56*), но потом начинает повышаться (до +20*).

в).Мезосфера (до 50-80 км).

Температура начинает уменьшаться (3,5* на 1 км).

г).Термосфера (до 800 км).

Температура очень быстро повышается и достигает 100*.

д).Экзосфера (более 800 км).

Температура выше 100*С.

2.Деление атмосферы на слои по составу воздуха.

а).Гомосфера - слой, где состав воздуха постоянен.

б).Гетеросфера - слой, где состав воздуха меняется с высотой.

в).Озоносфера - сильно разряженный воздух, озоновый слой (от 15 до 50 км).

3.Деление атмосферы на слои по признаку взаимодействия с земной поверхностью:

а).Пограничный слой (1-1,5 км).

б).Свободная атмосфера.

Международная стандартная атмосфера.

Стандартная атмосфера - это условное распределение по высоте средних значений основных физических параметров атмосферы (давление, температура, плотность, скорость звука для сухого и чистого воздуха постоянного состава, показатель которой используется при расчетах при приведении результатов испытаний к одинаковым условиям).

ГОСТ МСА:

Н = 2км - 50 км;

широта - 45*32 33;

t*C = 15*С (Т=288,15К);

ВТГ (вертикальный температурный градиент) - 6,5* на 1 км;

P(давление) = 760 мм рт. ст.(1013,25 гПа);

p(плотность воздуха) = 1,225 кг на кубический метр;

при этом показания ВТГ, Р, p даны на высоте Н=0.

Все важнейшие для летчика явления погоды развиваются главным образом в тропосфере.



Масса атмосферы составляет 5,27х10 в 15 степени тонн.

Тема 2 «Метеорологические элементы

И их анализ. Метеокоды и карты погоды».

Общие положения;

Метеорологические элементы:

а) атмосферное давление и плотность воздуха;

б) температура воздуха;

в) плотность и влажность воздуха;

г) направление и скорость ветра;

д) количество, форма и высота облаков и осадки;

е) видимость;

Явления погоды:

а) туманы и дымки;

б) обледенения;

в) грозы и шквалы;

Карты погоды:

а) приземные карты;

б) высотные карты.

Состояние атмосферы в определенный момент времени характеризуется рядом физических величин, которые называются метеоэлементами или параметрами (атмосферное давление, температура, плотность и влажность воздуха, направление и скорость ветра, количество, форма и высота облаков).

Кроме метеорологических элементов авиационной метеорологией изучаются и атмосферные явления (гроза, метель, туман и т.д.).

Совокупность метеоэлементов и атмосферных явлений, наблюдаемых в какой-либо момент или промежуток времени, называется погодой.

Основные параметры атмосферы оказывают влияние на часовой расход топлива, силу тяги двигателей, скороподъемность и потолок ВС, его устойчивость, длину разбега и пробег.

Метеорологические элементы.

Атмосферное давление

Это вес столба воздуха от данной поверхности до верхней границы атмосферы на 1 кв.см. поперечного сечения этого столба; атмосферное давление измеряется ртутным барометром, для нужд авиации - в миллиметрах ртутного столба, а для нужд погоды - в миллибарах (мб). Соотношение между этими единицами следующее: 1мб соответствует 0,75 мм рт. ст. (3/4), 1 мм рт. ст. соответствует 1,33 мб (4/3).

Стандартное атмосферное давление составляет 760 мм рт. ст. (при температуре 0* на широте 45*), что равно 1013,25 мб.

Для характеристики атмосферного давления используется такое понятие, как барический градиент. Барический градиент - изменение давления на единицу длины (используется для характеристики изменения давления с высотой и по горизонтали).

Положительный барический градиент направлен в сторону падения давления по кратчайшему пути.

Для характеристики изменения давления с высотой применяется барическая ступень. Барическая ступень - это расстояние по вертикали в метрах, на котором давление изменяется на 1 мм рт. ст. или на 1 мб, т.е. высота, на которую нужно подняться или опуститься, чтобы давление изменилось на 1 единицу. Так вблизи земли следует подняться в среднем на 8м, чтобы давление изменилось на 1 мм, на высоте 5 км - на 15м, а на высоте 18 км - на 70-80м.

Величина барической ступени зависит от давления и температуры: с увеличением давления и понижением температуры она уменьшается, с уменьшением давления и повышением температуры - увеличивается.

Влияние атмосферного давления на полет:

1).необходимо учитывать изменение давления при определении высоты полета;

2).рост атмосферного давления приводит к уменьшению скорости отрыва;

Значения атмосферного давления наносятся на синоптическую карту в виде линий равного атмосферного давления, называемых изобарами.

При оценке атмосферного давления следует учитывать барометрическую тенденцию, т.е. изменение атмосферного давления за последние 3 часа.

Плотность воздуха

Это отношение массы воздуха к объему, который он занимает, выраженное в г/куб.м. Плотность воздуха может быть вычислена, если известны давление воздуха и его температура. Она увеличивается с понижением температуры и увеличением давления, и наоборот.

Плотность воздуха зависит также от количества водяного пара в воздухе. Плотность водяного пара меньше плотности сухого воздуха, и поэтому влажный воздух при том же давлении будет иметь меньшую плотность, чем сухой. Так, при давлении 750 мм рт. ст. и температуре 20*С, плотность сухого воздуха составляет 1189 г/куб.м, а плотность насыщенного водяным паром воздуха при тех же условиях составляет 1178 г/куб.м, т.е. на 11 г/куб.м меньше.

Плотность изменяется в течение года в зависимости от географической широты, а также от изменения температуры и давления воздуха. В тропосфере плотность воздуха в общем меньше летом и больше зимой.

С высотой плотность воздуха уменьшается. Это уменьшение в основном определяется изменением атмосферного давления.

Давление, плотность и температура воздуха являются основными физическими параметрами, характеризующими воздух как среду, в которой происходит полет ЛА.

Температура воздуха

Это параметр, характеризующий степень нагретости воздуха.

Температура воздуха измеряется на Н=2м жидкостными термометрами.

В большинстве стран применяется стоградусная шкала (шкала Цельсия - *С), в которой за 0*С принята температура таяния льда, а за +100*С - температура кипения воды при давлении 760 мм рт.ст. В теоретической метеорологии, аэродинамике и других научных дисциплинах применяется абсолютная шкала температуры (Т), предложенная Кельвином (К*). Температуры по шкале Кельвина и Цельсия связаны соотношением:

Т= 273,15 + t*С,

где величина 273,15 называется абсолютным нулем температуры, а t* - температура по стоградусной шкале Цельсия.

Температура воздуха - это очень изменчивый метеоэлемент, зависящий от множества факторов: от количества тепла, поступающего на данной географической широте от Солнца, от характера подстилающей поверхности, от времени года и суток, от циркуляции атмосферы и т.д.

Под влиянием этих факторов температура испытывает периодические (суточные и годовые) и непериодические колебания.

Амплитуда суточного хода температур - это разность между максимальной и минимальной температурой в течение суток.

Годовая амплитуда температур - это разность между максимальной и минимальной температурой в течение года.

Правильный суточный ход температур - наиболее высокая температура от 13 до 15 часов местного времени, минимальная - перед восходом солнца.

Нагревание и охлаждение воздуха происходит от поверхности Земли. Воздух прогревается снизу вверх, поднимается, одновременно более холодный воздух опускается вниз сжимаясь. В результате происходит перемешивание воздуха по вертикали.

Повышение температуры с высотой в некотором слое называется инверсией. Слой, где температура воздуха не изменяется с высотой, называется изометрией. Инверсию и

изометрию называют задерживающими слоями, т.к. они затрудняют вертикальное движение воздуха. Эти слои регулярно наблюдаются на разных слоях в тропосфере, особенно в холодную половину года и в ночное время. Эти слои оказывают существенное влияние на формирование погоды. Под ними всегда может быть облачность, ухудшенная видимость, обледенение, болтанка, сдвиг ветра.

Изменение температуры с высотой на каждые 100м называется вертикальным температурным градиентом. По МСА в тропосфере вертикальный градиент температуры равен 0,65* при подъеме на 100м.

Температура воздуха наносится на карту погоды в виде сплошных линий равных температур - изотерм.

Влияние температуры воздуха на работу авиации значительное. Температура воздуха влияет на потребную и максимальную скорость полета, скороподъемность и потолок, мощность и тягу двигателей, длину разбега и пробега, показания приборов.

Высокие и низкие температуры у земли затрудняют работу техсостава по подготовке техники, при сильных морозах затрудняется запуск авиационных двигателей.

Отрицательное влияние на эксплуатацию авиатехники оказывают также резкие перепады температуры воздуха, особенно когда после сильных морозов наступает оттепель.

При положительных отклонениях температуры воздуха от данных МСА летные характеристики самолетов ухудшаются, а при отрицательных отклонениях - улучшаются.

При температуре воздуха у земли 0*С - (-3*С) на РД, ВПП, наземных сооружениях возможен гололед; при полете в облаках, осадках, где температура 0*С- (-10*С), возникает обледенение. При полете в воздушной массе, где вертикальный градиент температуры больше, чем 0,65* на 100м, отмечается болтанка, возникают грозы и явления с ней связанные.

Влажность воздуха

Это степень насыщения воздуха водяным паром. Она является важной величиной в оценке погоды, т.к. способствует образованию облаков, осадков, туманов, гроз и т.д.

Для оценки содержания водяного пара в воздухе применяются различные характеристики.

Абсолютная влажность (а) - количество водяного пара, содержащегося в 1 куб. метре, выраженное в граммах.

Упругость водяного пара (е) - парциальное давление водяного пара, содержащегося в воздухе, выражающееся в мм рт. ст. или мб. Численно обе эти величины близки между собой.

Абсолютную влажность в основном учитывают в весенне-летний период при прогнозировании гроз. Если а=15мб, следует ожидать грозу; а=20мб - гроза будет с ливневыми осадками, а больше 23мб - гроза будет со шквалом.

Относительная влажность (r) - процентное отношение фактического количества водяного пара в данном объеме воздуха к количеству водяного пара, насыщающего этот объем воздуха при той же температуре, выраженное в процентах:

r =------- х 100%, где

а - фактическое количество водяного пара;

А - максимально возможное количество водяного пара при данной температуре воздуха.

Максимальное количество водяного пара, которое может содержаться в воздухе (относительная влажность 100%), зависит только от температуры: чем выше температура, тем больше водяного пара необходимо для насыщения, и наоборот.

На приземных картах погоды вместо рассмотренных выше величин влажности воздуха наносится точка росы (t*d) - температура, при которой воздух достигает состояния насыщения при данном содержании водяного пара и неизменном давлении. Точка росы равна температуре воздуха при относительной влажности 100%. При этих условиях происходит конденсация водяного пара (переход водяного пара в жидкое состояние) и образование облаков и туманов. Чем суше воздух, тем больше разность между температурой воздуха и точкой росы (дефицит точки росы - дельта td).Охлаждение воздуха, содержащего водяной пар, может вызвать сублимацию (переход водяного пара в твердое состояние, минуя жидкую фазу).

Дефицит точки росы наносится на картах абсолютной топографии и служит для определения возможности образования облаков. На высотах до 5 км можно предполагать наличие 10 баллов облаков при дефицитах 0*, 1*, 2*. По дефициту можно определить уровень конденсации водяного пара, т.е. уровень, где воздух достигает 100% насыщения:

hк= 123 (t*C-t*d),

где hк - уровень конденсации.

Водяной пар играет исключительно важную роль в определении метеорологических условий полета в тропосфере. Наличие водяного пара в атмосфере является необходимым условием образования облаков, осадков, туманов. Атмосферные явления - грозы, метели, обледенение и такие оптические явления, как радуга, гало, венцы, - также неразрывно связаны с наличием воды в атмосфере. Такой важный метеорологический элемент, как видимость, в большинстве случаев обуславливается наличием в атмосфере мельчайших капель воды, кристаллов льда или тех и других вместе.

Направление и скорость ветра.

Ветром называется горизонтальное движение воздуха относительно земной поверхности. Но воздушные потоки не строго горизонтальны, т.к. почти всегда в этих движениях есть вертикальные составляющие.

Ветер - величина векторная и определяется двумя составляющими: направлением и скоростью.

Направление ветра - азимут точки горизонта, откуда дует ветер, измеряется в градусах.

Скорость ветра - скорость перемещения воздуха за выбранный интервал времени. Обычно измеряется в метрах в секунду. Для авиационных расчетов скорость ветра выражают в километрах в час. (1 м/сек = 3,6 км/час). Со скоростью ветра неразрывно связано понятие силы ветра:

2-3 м/сек - слабый (чуть ощущается);

4-7 м/сек - умеренный (качаются тонкие ветви деревьев);

10-12 м/сек - сильный (качаются толстые ветви деревьев);

Больше 15 м/сек - буря;

Больше 20 м/сек - шторм;

30 м/сек - ураган.

Ветер не является устойчивым течением и в короткие промежутки времени изменяется как по скорости, так и по направлению. Эта изменчивость ветра особенно резко выражается вблизи поверхности земли и непосредственно связана с турбулентным состоянием воздушного потока.

Движение воздуха происходит под действием силы вращения земли (кориолисова сила), силы барического градиента, возникающей вследствие неравномерного распределения давления воздуха в горизонтальном направлении, силы трения и силы тяжести.

Под воздействием этих сил в слое до 1000-1500м вектор времени направлен к изобаре под острым углом, величина которого больше над сушей и меньше над морем, больше в низких широтах и уменьшается к полюсам.

В циклоне в Северном полушарии ветры у земли дуют по спирали от периферии к центру против часовой стрелки, в антициклоне - по спирали от центра к периферии по часовой стрелке.

Скорость и направление ветра зависят от высоты над поверхностью земли, географического района, времени года и суток, от распределения давления.

Суточный ход скорости ветра у земли наиболее четко выражен над сушей и почти незаметен над морем. Более резко он выражен в теплую половину года и при ясной погоде, слабее - в холодную и при облачной погоде.

С увеличением высоты скорость ветра в среднем возрастает, и на высоте 500 м она выше почти вдвое, чем у земли; в слое трения ветер поворачивает вправо, а в свободной атмосфере дует почти строго вдоль изобар (если встать спиной к ветру, то меньшее давление будет слева).

Ветер имеет большое значение для авиации:

Ветер существенно влияет на взлет и посадку, при встречном ветре сокращается длина разбега и пробега;

При боковом ветре возникают силы, затрудняющие управление ЛА. Так, например, если ветер дует справа от направления взлета, то на правой плоскости возникает дополнительная подъемная сила, а на левой она уменьшается, в результате возникает кренящий момент; кроме того, боковой ветер создает силу, стремящуюся развернуть ЛА относительно его продольной оси, а следовательно - и в сторону от оси ВПП;

Еще большие трудности боковой ветер создает при посадке ЛА, т.к. затрудняет точное выдерживание ЛА на глиссаде снижения и во время пробега на ВПП;

Ветер значительно влияет на самолетовождение (необходима поправка на ветер при выдерживании направления);

Ветер вызывает болтанку, пыльные бури, низовые метели, ухудшающие видимость и затрудняющие взлет, полет, посадку ВС.

При оценке конкретных метеоусловий необходимо учитывать местные ветры, которые возникают под влиянием местных физико-географических и термических условий.

Серьезные трудности для пилотирования ЛА на глиссаде снижения, при взлете, посадке вызывает

сдвиг ветра.

Под сдвигом ветра понимается изменение направления или скорости ветра, или того и другого вместе в горизонтальном направлении, либо одного слоя атмосферы по отношению к другому по вертикали.

Различают горизонтальный и вертикальный сдвиги ветра:

Вертикальный сдвиг ветра (вертикальная составляющая градиента ветра) - это изменение направления и скорости ветра по высоте (например, на Н=200м направление ветра 280* и его скорость 18 м/сек, а на Н=100м направление ветра 80* и скорость 8 м/сек).

Горизонтальный сдвиг ветра (горизонтальная составляющая градиента ветра) - изменение направления и скорости ветра в различных точках по горизонтали на одной и той же высоте.

Для оценки интенсивности сдвига ветра следует пользоваться терминами и их численными категориями, которые рекомендованы ИКАО (смотреть Таблицу 1).


Ветром называют движение воздуха относительно земной поверхности, причем имеется в виду горизонтальная составляющая этого движения. Ветер характеризуется вектором скорости, но на практике под скоростью подразумевается только числовая величина скорости, направление вектора скорости называют направлением ветра. Скорость ветра выражается в метрах в секунду, в км/ч и в узлах (морская миля в час). Чтобы перевести скорость из метров в секунду в узлы, достаточно умножить число метров в секунду на 2.

Существует еще одна оценка скорости или, как принято говорить в этом случае, силы ветра в баллах, шкала Бофорта, по которой весь интервал возможных скоростей ветра делится на 12 градаций. Эта шкала связывает силу ветра с различными эффектами, производимыми ветром разной скорости, такими, как степень волнения на море, качание ветвей деревьев, распространение дыма из труб. Каждая градация скорости ветра имеет определенное название (смотри таблицу с характеристиками ветра по шкале Бофорта).

Таблица 1 - Характеристика скорости ветра по шкале Бофорта

Скорость ветра

Внешние признаки

Характеристика ветра

Полное отсутствие ветра. Дым поднимается отвесно.

Дым отклоняется от вертикального направления, позволяя определить направление ветра. Зажженная спичка не гаснет, но пламя заметно отклоняется

Движение воздуха можно определить лицом. Шелестят листья. Пламя зажженной спички быстро гаснет.

Заметно колебание листьев деревьев. Развеваются легкие флаги.

умеренный

Колеблются тонкие ветки. Поднимается пыль, клочки бумаги.

Колеблются большие ветки. На воде поднимаются волны.

Раскачиваются большие ветки. Гудят провода.

Качаются стволы небольших деревьев. На водоемах пенятся волны.

Ломаются ветви. Движение человека против ветра затруднено. Опасен для судов, буровых вышек и сходных сооружений.

сильная буря

Срываются домовые трубы и черепица с крыши, повреждаются легкие постройки.

полная буря

Деревья вырываются с корнем, происходят значительные разрушения легких построек.

Ветер производит большие разрушения легких построек.

Ветер производит огромные разрушения

Для более полной оценки производимых сильными ветрами разрушений американской Национальной службой погоды шкала Бофорта была дополнена:

  • - 12.1 баллов, скорость ветра 35 - 42м/с. Сильный ветровал. Значительные разрушения легких деревянных построек. Валятся некоторые телеграфные столбы.
  • - 12.2. 42-49 м/с. Разрушаются до 50% легких деревянных построек, в прочих постройках - повреждения дверей, крыш, окон. Штормовой нагон воды на 1,6-2,4 м выше нормального уровня моря.
  • - 12.3. 49-58 м/с. Полное разрушение легких домов. В прочных постройках - большие повреждения. Штормовой нагон - на 1,5-3.5 м выше нормального уровня моря. Серьезное нагонное наводнение, повреждение зданий водой.
  • - 12.4. 58-70 м/с. Полный ветровал деревьев. Полное разрушение легких и сильное повреждение прочных построек. Штормовой нагон - на 3,5-5,5 м выше нормального уровня моря. Сильная абразия берегов. Сильные повреждения нижних этажей зданий водой.
  • - 12.5. более 70 м/с. Многие прочные постройки разрушаются ветром, при скорости 80-100 м/с - также каменные, при скорости 110 м/с - практически все. Штормовой нагон выше 5,5 м. Интенсивные разрушения наводнением.

Скорость ветра на метеостанциях измеряют анемометрами; если прибор самопишущий, то он называется анемографом. Анеморумбограф определяет не только скорость, но и направление ветра в режиме постоянной регистрации. Приборы для измерения скорости ветра устанавливают на высоте 10-15 м над поверхностью, и измеренный ими ветер называется ветром у земной поверхности. Направление ветра определяют, назвав точку горизонта, откуда дует ветер или угол, образуемый направлением ветра с меридианом места, откуда дует ветер, т.е. его азимут. В первом случае различают 8 основных румбов горизонта: север, северо-восток, восток, юго-восток, юг, юго-запад, запад, северо-запад и 8 промежуточных.

8 основных румбов направления имеют следующие сокращения (русские и международные): С-N, Ю-S, З-W, В-E, СЗ-NW, СВ-NE, ЮЗ-SW, ЮВ-SE.

Если направление ветра характеризуется углом, то отсчет ведется от севера по часовой стрелке. В этом случае, север будет соответствовать 00 (360), северо-восток - 450, восток - 900, юг - 1800, запад - 2700.

При климатологической обработке наблюдений над ветром строят для каждого пункта диаграмму, представляющую собой распределение повторяемости направлений ветра по основным румбам - «розу ветров».

От начала полярных координат откладывают направление по румбам горизонта отрезками, длины которых пропорциональны повторяемости ветров данного направления. Концы отрезков соединяются ломаной линией. Повторяемость штилей указывают числом в центре диаграммы. При построении розы ветров можно учесть и среднюю скорость ветра по каждому направлению, умножив на нее повторяемость данного направления, тогда график покажет в условных единицах количество воздуха, переносимого ветрами каждого направления.


Однажды я задал дедушке такой вопрос и получил целый рассказ вместо ответа. Поскольку мой дед был моряком, он рассказал мне, как определяют силу ветра моряки . Постараюсь в точности передать то, что услышал в тот день.

От чего зависит сила ветра

Что такое ветер? По сути, это поток воздуха , что движется в горизонтальной плоскости. Но как он образуется? Это происходит вследствие того, что участки поверхности нашей планеты неравномерно прогреваются, тем самым образуя холодный или теплый воздух . Теплый воздух, как известно, устремляется вверх, «приглашая» холодный занять его место и, как следствие, мы наблюдаем ветер. Нужно отметить, что сила его напрямую зависит от скорости , которая в свою очередь зависит от барического градиента - показателя изменения давления. Другими словами, чем больше разница давления между участками, тем больше сила ветра.


Шкала Бофорта

В 1810 году британским моряком Френсисом Бофортом была разработана система классификации , позволяющая оценить скорость и силу ветра. Оценка происходит исходя из того, какое влияние оказывает ветер на наземные объекты или на поверхность моря . Эта классификация получила широкое применение в судоходстве и, несмотря на то, что сейчас чаще всего сила оценивается в метрах в секунду, моряки и по сей день применяют этот метод . Итак, согласно шкале различают следующие ветры:

  • штиль - морская гладь спокойна, дым поднимается вертикально;
  • тихий - дымок слегка отклоняется, однако флюгер остается на месте. На море слабая рябь;
  • легкий - слегка шелестит листва, флюгер указывает направление. На море наблюдается слабое волнение;
  • слабый - развеваются флажки, листва постоянно в движении. Волны ярко выражены;
  • умеренный - поднимается пыль, слегка колышутся тонкие ветви. «Белые барашки» хорошо различимы на море;
  • свежий - тонкие стволы находятся в движении. Все море покрыто «барашками»;
  • сильный - толстые ветви находятся в движении. На море заметны крупные волны;
  • крепкий - движение против ветра затруднено. Волны длинные и высокие;
  • очень крепкий - ломаются ветки, движение против ветра почти невозможно. По краям волн разлетаются брызги;
  • шторм - незначительные повреждения черепицы. Волны рассыпаются брызгами;
  • сильный шторм - разрушения весьма значительны, опрокинуты деревья. Море покрыто пеной;
  • жестокий шторм - огромный ущерб на значительной территории. Очень высокие волны, средние суда порой скрываются из вида;
  • ураган - обширные разрушения. Видимость на море ограничена.

В 1959 году для того, чтобы различать ураганные ветры по силе, шкала была расширена до 17 пунктов , однако приведенная выше является оптимальной для определения характеристики ветра.