Термодинамическая температура. Термодинамическая шкала температур

Термодинамика имеет дело с термоди­намической системой - совокупностью макроскопических тел, которые взаимо­действуют и обмениваются энергией как между собой, так и с другими телами (внешней средой). Основа термодинами­ческого метода - определение состояния термодинамической системы. Состояние системы задается термодинамическими параметрами (параметрами состояния) - совокупностью физических величин, ха­рактеризующих свойства термодинамиче­ской системы. Обычно в качестве парамет­ров состояния выбирают температуру, давление и удельный объем.

Температура - одно из основных по­нятий, играющих важную роль не только в термодинамике, но и в физике в целом. Температура - физическая величина, ха­рактеризующая состояние термодинами­ческого равновесия макроскопической системы. В соответствии с решением XI Генеральной конференции по мерам и весам (1960) в настоящее время можно применять только две температурные шка­лы - термодинамическую и Международ­ную практическую, градуированные соот­ветственно в Кельвинах (К) и в градусах Цельсия (°С).

В Международной практической шка­ле температура замерзания и кипения во­ды при давлении 1,013 10 5 Па соответ­ственно 0 и 100 °С (так называемые реперные точки).

Термодинамическая температурная шкала определяется по одной реперной точке, в качестве которой взята тройная точка воды (температура, при которой лед, вода и насыщенный пар при давле­нии 609 Па находятся в термодинамиче­ском равновесии). Температура этой точки по термодинамической шкале равна 273,16 К, (точно). Градус Цельсия равен Кельвину. В термодинамической шкале температура замерзания воды равна 273,15 К (при том же давлении, что и в Международной практической шкале), поэтому, по определению, термодинамиче­ская температура и температура по Меж­дународной практической шкале связаны соотношением T=273,15+t. Температура T=0 называется нулем кельвин. Анализ различных процессов показывает, что 0 К недостижим, хотя приближение к нему сколь угодно близко возможно.

Удельный объем v - это объем едини­цы массы. Когда тело однородно, т. е. его плотность =const, то v = V / m = 1/. Так как при постоянной массе удельный объем пропорционален общему объему, то мак­роскопические свойства однородного тела можно характеризовать объемом тела.

Параметры состояния системы могут изменяться. Любое изменение в термоди­намической системе, связанное с измене­нием хотя бы одного из ее термодинамиче­ских параметров, называется термодина­мическим процессом. Макроскопическая система находится в термодинамическом равновесии, если ее состояние с течением времени не меняется (предполагается, что внешние условия рассматриваемой систе­мы при этом не изменяются).

46. Взаимодействие атомов между собой

При рассмотрении реальных газов -

газов, свойства которых зависят от взаи­модействия молекул, надо учитывать силы межмолекулярного взаимодействия. Они

проявляются на расстояниях 10 -9 м и быстро убывают при увеличении рассто­яния между молекулами. Такие силы на­зываются короткодействующими.

В XX в., по мере развития представле­ний о строении атома и квантовой механи­ки, было выяснено, что между молекулами вещества одновременно действуют силы притяжения и силы отталкивания. На рис. 88, а приведена качественная зависи­мость сил межмолекулярного взаимодей­ствия от расстояния r между молекулами, где F o и F п - соответственно силы оттал­кивания и притяжения, a F - их результи­рующая. Силы отталкивания считаются положительными, а силы взаимного при­тяжения - отрицательными.

На расстоянии r = r 0 результирующая сила F =0, т. е. силы притяжения и оттал­кивания уравновешивают друг друга. Та­ким образом, расстояние r 0 соответствует равновесному расстоянию между молеку­лами, на котором бы они находились в от­сутствие теплового движения. При r

преобладают силы отталкивания (F>0), при r>r 0 - силы притяжения (F<0). На расстояниях r>10 -9 м межмолекулярные силы взаимодействия практически отсут­ствуют (F 0).

Элементарная работа A силы F при увеличении расстояния между молекула­ми на dr совершается за счет уменьше­ния взаимной потенциальной энергии мо­лекул, т. е.

A=Fdr=-dП. (60.1)

Из анализа качественной зависимости по­тенциальной энергии взаимодействия мо­лекул от расстояния между ними (рис. 88, б) следует, что если молекулы находятся друг от друга на расстоянии, на котором межмолекулярные силы взаимо­действия не действуют (г), то П=0. При постепенном сближении молекул между ними появляются силы притяжения (F<0), которые совершают положитель­ную работу (A=Fdr>0). Тогда, со­гласно (60.1), потенциальная энергия вза­имодействия уменьшается, достигая мини­мума при r=r 0 . При r< r 0 с уменьшением r силы отталкивания (F >0) резко воз­растают и совершаемая против них работа отрицательна (A = Fdr <0). Потенци­альная энергия начинает тоже резко воз­растать и становится положительной. Из данной потенциальной кривой следует, что система из двух взаимодействующих мо­лекул в состоянии устойчивого равновесия (r=r 0) обладает минимальной потенци­альной энергией.

Критерием различных агрегатных со­стояний вещества является соотношение величин П min и kT . П min - наименьшая потенциальная энергия взаимодействия молекул - определяет работу, которую нужно совершить против сил притяже­ния для того, чтобы разъединить моле­кулы, находящиеся в равновесии (r=r 0); kT определяет удвоенную среднюю энер­гию, приходящуюся на одну степень сво­боды хаотического теплового движения молекул.

Если П min <, т. е. вероятность образования агрегатов из молекул доста­точно мала. Если II min >>kT , то вещество находится в твердом состоянии, так как молекулы, притягиваясь друг к другу, не могут удалиться на значительные расстоя­ния и колеблются около положений равно­весия, определяемого r0. Если П min kT , то вещество находится в жидком состоя­нии, так как в результате теплового дви­жения молекулы перемещаются в про­странстве, обмениваясь местами, но не расходясь на расстояние, превышающее r 0 . Таким образом, любое вещество в за­висимости от температуры может нахо­диться в газообразном, жидком или твер­дом агрегатном состоянии, причем темпе­ратура перехода из одного агрегатного состояния в другое зависит от значения П min для данного вещества. Например, у инертных газов П min мало, а у метал­лов - велико, поэтому при обычных (ком­натных) температурах они находятся со­ответственно в газообразном и твердом со­стояниях.

(K) и отсчитывается по абсолютной термодинамической шкале (Кельвина). Абсолютная термодинамическая шкала является основной шкалой в физике и в уравнениях термодинамики.

Молекулярно-кинетическая теория, со своей стороны, связывает абсолютную температуру со средней кинетической энергией поступательного движения молекул идеального газа в условиях термодинамического равновесия:

\frac{1}{2} m\bar{v}^2 = \frac{3}{2}kT,

где m ─ масса молекулы, \bar{v} ─ средняя квадратичная скорость поступательного движения молекул , T ─ абсолютная температура, k ─ постоянная Больцмана .

История

Измерение температуры прошло долгий и трудный путь в своём развитии. Так как температура не может быть измерена непосредственно, то для её измерения использовали свойства термометрических тел, которые находились в функциональной зависимости от температуры. На этой основе были разработаны различные температурные шкалы, которые получили название эмпирических , а измеренная с их помощью температура называется эмпирической. Существенными недостатками эмпирических шкал являются отсутствие их непрерывности и несовпадение значений температур для разных термометрических тел: как между реперными точками, так и за их пределами. Отсутствие непрерывности эмпирических шкал связано с отсутствием в природе вещества, которое способно сохранять свои свойства во всём диапазоне возможных температур. В 1848 г. Томсон (лорд Кельвин) предложил выбрать градус температурной шкалы таким образом, чтобы в её пределах эффективность идеальной тепловой машины была одинаковой. В дальнейшем, в 1854 г. он предложил использовать обратную функцию Карно для построения термодинамической шкалы, не зависящей от свойств термометрических тел. Однако, практическая реализация этой идеи оказалась невозможной. В начале XIX века в поисках «абсолютного» прибора для измерения температуры снова вернулись к идее идеального газового термометра, основанного на законах идеальных газов Гей-Люссака и Шарля. Газовый термометр в течение долгого времени был единственным способом воспроизведения абсолютной температуры. Новые направления в воспроизведении абсолютной температурной шкалы основаны на использовании уравнения Стефана ─ Больцмана в бесконтактной термометрии и уравнения Гарри (Харри) Найквиста ─ в контактной.

Физические основы построения термодинамической шкалы температур.

1. Термодинамическая шкала температур принципиально может быть построена на основании теоремы Карно, которая утверждает, что коэффициент полезного действия идеального теплового двигателя не зависит от природы рабочего тела и конструкции двигателя, и зависит только от температур нагревателя и холодильника.

\eta=\frac{Q_1-Q_2} {Q_1}=\frac{T_1-T_2} {T_1},

где Q_1 – количество теплоты полученной рабочим телом (идеальным газом) от нагревателя, Q_2 – количество теплоты отданное рабочим телом холодильнику, T_1, T_2 – температуры нагревателя и холодильника, соответственно.

Из приведённого выше уравнения следует соотношение:

\frac{ Q_{1} }{ Q_{2} } = \frac{ T_{1} }{ T_{2} }

Это соотношение может быть использовано для построения абсолютной термодинамической температуры . Если один из изотермических процессов цикла Карно Q_3 проводить при температуре тройной точки воды (реперная точка), установленной произвольно ─ T_3=273,16 K, то любая другая температура будет определяться по формуле T=273,16 \frac{Q}{ Q_{3} }. Установленная таким образом температурная шкала называется термодинамической шкалой Кельвина . К сожаленью, точность измерения количества теплоты невысока, что не позволяет реализовать вышеописанный способ на практике.

2. Абсолютная температурная шкала может быть построена, если использовать в качестве термометрического тела идеальный газ. В самом деле, из уравнения Клапейрона вытекает соотношение

T=\frac{pV}{R}

Если измерять давление газа, близкого по свойствам к идеальному, находящегося в герметичном сосуде постоянного объёма, то таким способом можно установить температурую шкалу, которая носит название идеально-газовой. Преимущество этой шкалы состоит в том, что давление идеального газа при V=const изменяется линейно с температурой. Поскольку даже сильно разреженные газы по своим свойствам несколько отличаются от идеального газа, то реализация идеально - газовой шкалы связана с определёнными трудностями.

3. В различных учебниках по термодинамике приводятся доказательства того, что температура, измеренная по идеально-газовой шкале, совпадает с термодинамической температурой. Следует, однако, оговориться: несмотря на то, что численно термодинамическая и идеально-газовая шкалы абсолютно идентичны, с качественной точки зрения между ними есть принципиальная разница. Только термодинамическая шкала является абсолютно независимой от свойств термометрического вещества.

4.Как уже было указано, точное воспроизведение термодинамической шкалы, а также идеально-газовой, сопряжено с серьёзными трудностями. В первом случае необходимо тщательно измерять количество теплоты, которая подводится и отводится в изотермических процессах идеального теплового двигателя. Такого рода измерения неточны. Воспроизедение термодинамической (идеально-газовой) температурной шкалы в диапазоне от 10 до 1337 K возможно с помощью газового термометра. При более высоких температурах заметно проявляется диффузия реального газа сквозь стенки резервуара, а при температурах в несколько тысяч градусов многоатомные газы распадаются на атомы. При ещё больших температурах реальные газы ионизируются и превращаются в плазму, которая не подчиняется уравнению Клапейрона. Наиболее низкая температура, которая может быть измерена газовым термометром, заполненным гелием при низком давлении равна 1K. Для измерения температур за пределами возможностей газовых термометров используют специальные методы измерения. Подробнее см. Термометрия .

Напишите отзыв о статье "Термодинамическая температура"

Примечания

Литература

  • Украинская советская энциклопедия : в 12 томах = Українська радянська енциклопедія (укр.) / За ред. М. Бажана . - 2-ге вид. - К. : Гол. редакція УРЕ, 1974-1985.
  • Малая горная энциклопедия . В 3-х т. = Мала гірнича енциклопедія / (На укр. яз.). Под ред. В. С. Белецкого . - Донецк: Донбасс, 2004. - ISBN 966-7804-14-3 .
  • Белоконь Н. И. Термодинамика. - М .: Госэнергоиздат, 1954. - 417 с.
  • Белоконь Н. И. Основные принципы термодинамики. - М .: Недра, 1968. - 112 с.
  • Кириллин В.А. Техническая термодинамика. - М .: Энергоатомиздат, 1983. - 414 с.
  • Вукалович М. П., Новиков И. И. Техническая термодинамика. - М .: Энергия, 1968. - 497 с.
  • Сивухин Д. В. Общий курс физики. Т. II. Термодинамика и молекулярная физика. - М .: ФИЗМАТЛИТ, 2005. - 544 с. - ISBN 5-9221-0601-5 .
  • Базаров И. П. Термодинамика. - М .: Высшая школа, 1991. - 376 с. - ISBN 5-06-000626-3 .
  • Різак В.,Різак І., Рудавський Е. Кріогенна фізика і техніка. - К. : Наукова думка, 2006. - 512 с. - ISBN 966-00-480-X.

Отрывок, характеризующий Термодинамическая температура

Пьер оглядывался вокруг себя налившимися кровью глазами и не отвечал. Вероятно, лицо его показалось очень страшно, потому что офицер что то шепотом сказал, и еще четыре улана отделились от команды и стали по обеим сторонам Пьера.
– Parlez vous francais? – повторил ему вопрос офицер, держась вдали от него. – Faites venir l"interprete. [Позовите переводчика.] – Из за рядов выехал маленький человечек в штатском русском платье. Пьер по одеянию и говору его тотчас же узнал в нем француза одного из московских магазинов.
– Il n"a pas l"air d"un homme du peuple, [Он не похож на простолюдина,] – сказал переводчик, оглядев Пьера.
– Oh, oh! ca m"a bien l"air d"un des incendiaires, – смазал офицер. – Demandez lui ce qu"il est? [О, о! он очень похож на поджигателя. Спросите его, кто он?] – прибавил он.
– Ти кто? – спросил переводчик. – Ти должно отвечать начальство, – сказал он.
– Je ne vous dirai pas qui je suis. Je suis votre prisonnier. Emmenez moi, [Я не скажу вам, кто я. Я ваш пленный. Уводите меня,] – вдруг по французски сказал Пьер.
– Ah, Ah! – проговорил офицер, нахмурившись. – Marchons!
Около улан собралась толпа. Ближе всех к Пьеру стояла рябая баба с девочкою; когда объезд тронулся, она подвинулась вперед.
– Куда же это ведут тебя, голубчик ты мой? – сказала она. – Девочку то, девочку то куда я дену, коли она не ихняя! – говорила баба.
– Qu"est ce qu"elle veut cette femme? [Чего ей нужно?] – спросил офицер.
Пьер был как пьяный. Восторженное состояние его еще усилилось при виде девочки, которую он спас.
– Ce qu"elle dit? – проговорил он. – Elle m"apporte ma fille que je viens de sauver des flammes, – проговорил он. – Adieu! [Чего ей нужно? Она несет дочь мою, которую я спас из огня. Прощай!] – и он, сам не зная, как вырвалась у него эта бесцельная ложь, решительным, торжественным шагом пошел между французами.
Разъезд французов был один из тех, которые были посланы по распоряжению Дюронеля по разным улицам Москвы для пресечения мародерства и в особенности для поимки поджигателей, которые, по общему, в тот день проявившемуся, мнению у французов высших чинов, были причиною пожаров. Объехав несколько улиц, разъезд забрал еще человек пять подозрительных русских, одного лавочника, двух семинаристов, мужика и дворового человека и нескольких мародеров. Но из всех подозрительных людей подозрительнее всех казался Пьер. Когда их всех привели на ночлег в большой дом на Зубовском валу, в котором была учреждена гауптвахта, то Пьера под строгим караулом поместили отдельно.

В Петербурге в это время в высших кругах, с большим жаром чем когда нибудь, шла сложная борьба партий Румянцева, французов, Марии Феодоровны, цесаревича и других, заглушаемая, как всегда, трубением придворных трутней. Но спокойная, роскошная, озабоченная только призраками, отражениями жизни, петербургская жизнь шла по старому; и из за хода этой жизни надо было делать большие усилия, чтобы сознавать опасность и то трудное положение, в котором находился русский народ. Те же были выходы, балы, тот же французский театр, те же интересы дворов, те же интересы службы и интриги. Только в самых высших кругах делались усилия для того, чтобы напоминать трудность настоящего положения. Рассказывалось шепотом о том, как противоположно одна другой поступили, в столь трудных обстоятельствах, обе императрицы. Императрица Мария Феодоровна, озабоченная благосостоянием подведомственных ей богоугодных и воспитательных учреждений, сделала распоряжение об отправке всех институтов в Казань, и вещи этих заведений уже были уложены. Императрица же Елизавета Алексеевна на вопрос о том, какие ей угодно сделать распоряжения, с свойственным ей русским патриотизмом изволила ответить, что о государственных учреждениях она не может делать распоряжений, так как это касается государя; о том же, что лично зависит от нее, она изволила сказать, что она последняя выедет из Петербурга.
У Анны Павловны 26 го августа, в самый день Бородинского сражения, был вечер, цветком которого должно было быть чтение письма преосвященного, написанного при посылке государю образа преподобного угодника Сергия. Письмо это почиталось образцом патриотического духовного красноречия. Прочесть его должен был сам князь Василий, славившийся своим искусством чтения. (Он же читывал и у императрицы.) Искусство чтения считалось в том, чтобы громко, певуче, между отчаянным завыванием и нежным ропотом переливать слова, совершенно независимо от их значения, так что совершенно случайно на одно слово попадало завывание, на другие – ропот. Чтение это, как и все вечера Анны Павловны, имело политическое значение. На этом вечере должно было быть несколько важных лиц, которых надо было устыдить за их поездки во французский театр и воодушевить к патриотическому настроению. Уже довольно много собралось народа, но Анна Павловна еще не видела в гостиной всех тех, кого нужно было, и потому, не приступая еще к чтению, заводила общие разговоры.
Новостью дня в этот день в Петербурге была болезнь графини Безуховой. Графиня несколько дней тому назад неожиданно заболела, пропустила несколько собраний, которых она была украшением, и слышно было, что она никого не принимает и что вместо знаменитых петербургских докторов, обыкновенно лечивших ее, она вверилась какому то итальянскому доктору, лечившему ее каким то новым и необыкновенным способом.
Все очень хорошо знали, что болезнь прелестной графини происходила от неудобства выходить замуж сразу за двух мужей и что лечение итальянца состояло в устранении этого неудобства; но в присутствии Анны Павловны не только никто не смел думать об этом, но как будто никто и не знал этого.
– On dit que la pauvre comtesse est tres mal. Le medecin dit que c"est l"angine pectorale. [Говорят, что бедная графиня очень плоха. Доктор сказал, что это грудная болезнь.]
– L"angine? Oh, c"est une maladie terrible! [Грудная болезнь? О, это ужасная болезнь!]
– On dit que les rivaux se sont reconcilies grace a l"angine… [Говорят, что соперники примирились благодаря этой болезни.]
Слово angine повторялось с большим удовольствием.
– Le vieux comte est touchant a ce qu"on dit. Il a pleure comme un enfant quand le medecin lui a dit que le cas etait dangereux. [Старый граф очень трогателен, говорят. Он заплакал, как дитя, когда доктор сказал, что случай опасный.]
– Oh, ce serait une perte terrible. C"est une femme ravissante. [О, это была бы большая потеря. Такая прелестная женщина.]
– Vous parlez de la pauvre comtesse, – сказала, подходя, Анна Павловна. – J"ai envoye savoir de ses nouvelles. On m"a dit qu"elle allait un peu mieux. Oh, sans doute, c"est la plus charmante femme du monde, – сказала Анна Павловна с улыбкой над своей восторженностью. – Nous appartenons a des camps differents, mais cela ne m"empeche pas de l"estimer, comme elle le merite. Elle est bien malheureuse, [Вы говорите про бедную графиню… Я посылала узнавать о ее здоровье. Мне сказали, что ей немного лучше. О, без сомнения, это прелестнейшая женщина в мире. Мы принадлежим к различным лагерям, но это не мешает мне уважать ее по ее заслугам. Она так несчастна.] – прибавила Анна Павловна.
Полагая, что этими словами Анна Павловна слегка приподнимала завесу тайны над болезнью графини, один неосторожный молодой человек позволил себе выразить удивление в том, что не призваны известные врачи, а лечит графиню шарлатан, который может дать опасные средства.
– Vos informations peuvent etre meilleures que les miennes, – вдруг ядовито напустилась Анна Павловна на неопытного молодого человека. – Mais je sais de bonne source que ce medecin est un homme tres savant et tres habile. C"est le medecin intime de la Reine d"Espagne. [Ваши известия могут быть вернее моих… но я из хороших источников знаю, что этот доктор очень ученый и искусный человек. Это лейб медик королевы испанской.] – И таким образом уничтожив молодого человека, Анна Павловна обратилась к Билибину, который в другом кружке, подобрав кожу и, видимо, сбираясь распустить ее, чтобы сказать un mot, говорил об австрийцах.

Пока мы не будем делать попыток выразить эту возрастаю­щую функцию в терминах делений знакомого нам ртутного гра­дусника, а взамен определим новую температурную шкалу. Когда-то «температура» определялась столь же произвольно. Мерой температуры служили метки, нанесенные на равных расстояниях на стенках трубочки, в которой при нагревании расширялась вода. Потом решили измерить температуру ртут­ным термометром и обнаружили, что градусные расстояния уже не одинаковы. Сейчас мы можем дать определение температуры, не зависящее от каких-либо частных свойств вещества. Для этого мы используем функцию f(T), которая не зависит ни от одного устройства, потому что эффективность обратимых машин не зависит от их рабочего вещества. Поскольку найденная нами функция возрастает с температурой, то мы можем считать, что она сама по себе измеряет температуру, начиная со стандартной температуры в один градус. Для этого надо только договориться, что

Q=Q S T, (44.10)

Q S =S 1°. (44.11)

Это означает, что теперь мы можем найти температуру тела, определив количество тепла, которое поглощается обратимой машиной, работающей в интервале между температурой тела и температурой в один градус (фиг. 44.9)

Фиг. 44.9. Абсолютная термо­динамическая температура.

Если машина забирает из котла в семь раз больше тепла, нежели поступает в одно­градусный конденсор, то температура котла равна семи граду­сам и т. д. Таким образом, измеряя количество тепла, погло­щаемого при разных температурах, мы определяем температуру. Полученная таким образом температура называется абсолютной термодинамической температурой и не зависит от свойств ве­щества. Теперь мы будем пользоваться исключительно этим определением температуры.

Теперь нам ясно, что если у нас имеются две машины, из коих одна работает при перепаде температур Т 1 и один градус, а другая - T 2 и один градус, и обе они выделяют при единичной температуре одинаковое количество тепла, то поглощаемое ими тепло должно удовлетворять соотношению

q 1 /t 1 =s=q 2 /t 2 . (44.12)

Но это означает, что если какая-нибудь обратимая машина по­глощает тепло q 1 при температуре Т 1 , а выделяет тепло Q 2 при температуре Т 2 , то отношение Q 1 к T 1 равно отношению Q 2 к T 2 . Это справедливо для любой обратимой машины. Все, что будет дальше, содержится в этом соотношении: это центр тер­модинамической науки.

Но если это все, что есть в термодинамике, то почему же ее считают такой трудной наукой? А попробуйте описать поведение какого-нибудь вещества, если вам даже заранее известно, что масса вещества все время постоянна. В этом случае состояние вещества в любой момент времени определяется его температу­рой и объемом. Если известны температура и объем вещества, а также зависимость давления от объема и температуры, то можно узнать и внутреннюю энергию. Но кто-нибудь скажет: «А я хочу поступить иначе. Дайте мне температуру и давление и я скажу вам, каков объем. Я могу считать объем функцией температуры и давления и искать зависимость внутренней энер­гии именно от этих переменных». Трудности термодинамики связаны именно с тем, что каждый может подойти к задаче с того конца, с какого вздумает. Нужно только сесть и выбрать опре­деленные переменные, а потом уж твердо стоять на своем, и все станет легко и просто.

Сейчас приступим к выводам. В механике мы подошли ко всем нужным нам результатам, исходя из центра механического мира F =ma . Такую же роль в термодинамике сыграет только что найденный нами принцип. Но какие выводы можно сделать, исходя из этого принципа?

Ну начнем. Сначала скомбинируем закон сохранения энер­гии и закон, связывающий Q 1 и Q 2 , чтобы найти коэффициент полезного действия обратимой машины. Первый закон говорит, что W=Q 1 -Q 2 . Согласно нашему новому принципу,

Q 2 =(T 2 /T 1)Q 1 . Поэтому работа равна

W=Q 1 (l-T 2 /T 1) =Q 1 (T 1 -T 2)/T 1 . (44.13)

Это соотношение характеризует эффективность машины, т. е. количество работы, произведенное при заданной затрате тепла. Коэффициент полезного действия пропорционален перепаду температур, при котором работает машина, деленному на более высокую температуру:

К.п.д. =W/Q 1 =(T 1 -T 2)/T 1 . (44.14)

Коэффициент полезного действия не может быть больше едини­цы, а абсолютная температура не может быть меньше нуля, аб­солютного нуля. Таким образом, раз t 2 должна быть положи­тельной, то коэффициент полезного действия всегда меньше единицы. Это наш первый вывод.

Конец работы -

Эта тема принадлежит разделу:

Кинетическая теория газов

На сайте сайт читайте: "кинетическая теория газов"..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Свойства вещества
С этой главы мы начнем изучение новой темы, которая займет у нас довольно много времени. Мы начнем анализ свойств вещества с физической точки зрения. Зная, что вещество построено из большого

Давление газа
Каждый знает, что газ оказывает давление. Но отчего? В этом надо разобраться как следует. Если бы наши уши были намного чувствительнее, чем они есть на самом деле, мы бы все время слышали страшный

Сжимаемость излучения
Приведем еще один пример из кинетической теории газов; он не особенно интересует химиков, но очень важен для астро­номов. Внутри нагретого до высокой температуры ящика име­ется огромное число фотон

Температура и кинетическая энергия
До сих пор мы не имели дела с температурой; мы созна­тельно избегали разговоров на эту тему. Мы знаем, что если сжимать газ, энергия молекул возрастает, и мы обычно гово­рим, что газ при это

Закон идеального газа
Теперь можно подставить наше определение температуры в уравнение (39.9) и найти закон зависимости давления газа от температуры: произведение давления на объем равно про­изведению полного числа атом

Экспоненциальная атмосфера
Мы уже изучали некоторые свойства боль­шого числа сталкивающихся атомов. Наука, которая занимается этим, называется кине­тической теорией, и она описывает свойства вещества, рассматривая, как сталк

Закон Болъцмаиа
Отметим здесь тот факт, что числитель показателя экспонен­ты в равенстве (40.1) - это потенциальная энергия, атома. Поэ­тому можно в нашем случае сформулировать закон следующим образом: плот

Испарение жидкости
В менее элементарной статистической механике пытаются решить следующую важную задачу. Предположим, что имеется совокупность притягивающихся друг к другу молекул и сила между любыми двумя молекулами

Распределение молекул по скоростям
Обсудим теперь распределение молекул по скоростям, по­тому что интересно, а иногда и полезно знать, какая часть мо­лекул движется с той или иной скоростью. Чтобы выяснить это, можно использовать те

Удельные теплоемкости газов
Посмотрим теперь, как можно проверить теорию и оценить, насколько хороша классическая теория газов. Мы уже гово­рили, что если U-внутренняя энергия N молекул, то фор­мула pV=NkT=(g-1)

Поражение классической физики
Итак, приходится сказать, что мы натолкнулись на труд­ности. Можно соединить атомы не пружинкой, а чем-нибудь другим, но оказывается, что это только увеличит значение g. Если пустить в ход другие в

Равнораспределение энергии
Броуновское движение открыл в 1827 г. ботаник Роберт Броун. Изучая жизнь под мик­роскопом, он заметил, что мельчайшие частицы цветочной пыльцы пляшут в его поле зрения; в то же время он был достато

Тепловое равновесие излучения
Мы приступаем к обсуждению более сложной и интересной теоремы, суть которой состоит в следующем. Предположим, что у нас имеется заряженный осциллятор, вроде того, о котором мы говорили, когд

Равномерное распределение и квантовый осциллятор
Только что отмеченная трудность - это еще одна сторона проблемы непрерывности в классической физике, она началась с непорядка в теплоемкостях газов, а потом эта проблема сконцентрировалась на распр

Случайные блуждания
Попробуем понять, насколько меняется положение танцу­ющей частицы за время, во много раз большее, чем промежуток между двумя ударами. Посмотрим на маленькую частицу, которая вовлеклась в броуновско

Испарение
Эта глава посвящена дальнейшим приме­нениям кинетической теории. В предыдущей главе мы подчеркнули один из выводов этой теории, что средняя кинетическая энергия каждой степени свободы молекулы или

Термоиониая эмиссия
Можно привести еще один пример часто встречающегося процесса, столь похожего на испарение жидкости, что его даже не придется анализировать отдельно. В сущности, это та же самая задача. В любой ради

Тепловая ионизация
Перейдем теперь к еще одному применению все той же идеи. Теперь речь пойдет об ионизации. Предположим, что газ состоит из великого множества атомов, которые обычно нейтральны, но если газ нагреть,

Химическая кинетика
При химических реакциях происходит нечто похожее на «ионизаци

Законы излучения Эйнштейна
Обратимся теперь к интересной задаче, похожей на только что о

Столкновения молекул
До сих пор мы изучали движение молекул только при тепловом равновесии. А теперь нужно обсудить, как движутся молекулы газа, когда он близок к равновесию, но еще не достиг его полностью. Если газ сл

Средняя длина свободного пробега
Есть еще возможность описать столкновения молекул, не вводя для этого времени между столкновениями. Можно оп­ределить, далеко ли успеет уйти частица между столкновениями. Если мы знае

Скорость дрейфа
Мы хотим описать поведение одной или нескольких молекул, которые чем-то отличаются от огромного большинства осталь­ных молекул газа. Будем называть «большинство» молекул молекулами «фона», а отлича

Нонная проводимость
Применим наши результаты к частному случаю. Предпо­ложим, что в сосуде, заполненном газом, содержатся также ионы - атомы или молекулы с избыточным электрическим зарядом. Схематически это выглядит т

Молекулярная диффузия
Перейдем к другой задаче, для которой нам придется не­сколько изменить метод анализа, - к задаче о диффузии. Пред­положим, что мы взяли ящик, заполненный газом, находящимся в тепловом равновесии, а

Подставляя этот результат в (43.22) и пренебрегая множителем 2, получаем
Jx=lv(dna/dx) (43.24) Мы выяснили, что поток особых молекул пропорционален про­изводной плотности, или, как иногда говорят, «градиенту плотности».

Теплопроводность
Методы кинетической теории, которую мы так успешно применяли, позволяют также рассчитать и теплопроводность газа. Если газ в верхней части ящика горячее, чем внизу, то тепло перетечет сверху

Тепловые машины; первый закон
До сих пор мы рассматривали свойства вещества с атомной точки зрения, причем мы пытались, хотя бы в общих чертах, понять, что произойдет, если принять, что вещество состоит из атомов, подчиняющихся

Второй закон
А что такое второй закон термодинамики? Мы знаем, что если при работе приходится преодолевать трение, то потерян­ная работа равна выделившемуся теплу. Если мы преодолеваем трение в комнате при темп

Обратимые машины
Давайте разберемся в наших машинах получше. Одно из свойств всех машин нам уже известно. Если в машине есть трение, то неизбежны потери энергии. Наилучшей машиной была бы машина вообще без трения.

Коэффициент полезного действия идеальной машины
А сейчас попробуем найти закон, определяющий работу W как функцию Q1, Т1 и Т2 . Ясно, что W пропорционально Q1, ибо ес

Энтропия
Уравнение (44.7) или (44.12) может быть истолковано особо. При работе обратимых машин Q1/T1=Q2/T2, и тепло Q1 при температуре

Внутренняя энергия
Когда приходится использовать термоди­намику для дела, то оказывается, что она очень трудный и сложный предмет. В этой книге, однако, мы не будем залезать в самые дебри. Эта область особенно интере

Применения
Теперь обсудим смысл уравнения (45.7) и посмотрим, почему оно дает ответ на поставленные в предыдущей главе вопросы. Мы занимались рассмотрением такой задачи: в кинетической теории ясно, что рост т

Уравнение Клаузиуса- Клайперона
Испарение жидкости - это еще одна область, в которой можно применить наши результаты. Предположим, что мы вдвигаем поршень в цилиндр с каким-то веществом. Естественно задать себе вопрос: к

Как действует храповик
В этой главе мы поговорим о храповике и собачке - очень простом устройстве, позволяю­щем оси вращаться только в одном направлении. Возможность получать одностороннее вращение заслуживает глубокого

Храповик как машина
Пойдем дальше. Рассмотрим другой пример: температура вертушки T1, а температура храповика Т2; T2 меньше Т1. Так как храповик хол

Обратимость в механике
Что же это за глубокий механический принцип, который утверждает, что при постоянстве температуры и достаточно про­должительной работе наше устройство не уйдет ни назад, ни вперед? Очевидно, мы полу

Необратимость
Все ли законы физики обратимы? Конечно, нет! Попробуйте-ка, например, из яичницы слепить обратно яйцо! Или пустите фильм в обратную сторону - публика в зале тотчас же начнет смеяться. Необратимость

Порядок и энтропия
Итак, мы должны теперь потолковать о том, что понимать под беспорядком и что - под порядком. Дело не в том, что по­рядок приятен, а беспорядок неприятен. Наши смешанные и несмешанные газы отличаютс

Распространение звука
Давайте выведем теперь свойства распространения звука между источником и приемником, основываясь на законах Нью­тона, но не учитывая при этом взаимодействия звука с источ­ником и приемником. Обычно

Волновое уравнение
Итак, физические явления, происходящие в звуковой волне, обладают следующими тремя свойствами: I. Газ движется, и плотность его меняется. II. При изменении плотности меняется и давление. I

Решения волнового уравнения
Посмотрим теперь, действительно ли волновое уравнение описывает основные свойства звуковых волн в среде. Прежде всего мы хотим вывести, что звуковое колебание, или возмуще­ние, движется с постоянно

Скорость звука
При выводе волнового уравнения для звука мы получили формулу, которая связывает при нормальном давлении скорость движения волны и относительное изменение давления с плотностью: с2

Сложение двух волн
Не так давно мы довольно подробно обсуж­дали свойства световых волн и их интерферен­цию, т. е. эффект суперпозиции двух волн от различных источников. Но при этом пред­полагалось, что частоты источн

Некоторые замечания о биениях и модуляции
Предположим теперь, что нас интересует интенсивность волны, описываемой уравнением (48.7). Чтобы найти ее, нужно взять квадрат абсолютной величины либо правой, либо левой части этого уравнения. Дав

Боковые полосы
Описанную выше модулированную волну математически можно записать в виде S=(1+bcoswmt)coswct, (48.9) где (wс- несущая частота, а w

Локализованный волновой пакет
Следующий вопрос, который мы хотим обсудить,- это ин­терференция волн как в пространстве, так и во времени. Пред­положим, что в пространстве распространяются две волны. Вы, конечно, знаете, что рас

Амплитуда вероятности частиц
Рассмотрим еще один необычайно интересный пример фа­зовой ско

Волны в пространстве трех измерений
Мы заканчиваем наше обсуждение волн несколькими об­щими замечаниями о волновом уравнении. Эти замечания, при­званные дать нам картину того, чем нам предстоит заниматься в будущем, вовсе не претенду

Собственные колебания
Вернемся теперь к другим очень любопытным примерам биений, которые немного отличаются от того, что мы рассмат­ривали до сих пор. Представьте себе два одинаковых маятника, которые связаны между собо

Отражение волн
В этой главе мы рассмотрим ряд замеча­тельных явлений, возникающих в результате «заключения» волны в некоторую ограничен­ную область. Сначала нам придется устано­вить несколько частных фактов, отно

Волны в ограниченном пространстве и собственные частоты
Перейдем к обсуждению следующей интересной задачи. Что произойдет, если струну закрепить с двух концов, скажем в точках x=0 и x=L? Давайте начнем с идеи отражения волны, с некоего горба, движущегос

Двумерные собственные колебания
Сейчас мы перейдем к рассмотрению очень интересного поведения собственных гармоник в двумерных колебаниях. До сих пор мы говорили только об одномерных колебаниях: натянутой струне или звуковых волн

Связанные маятники
Напоследок необходимо подчеркнуть, что гармоники возни­кают не только в сложных непрерывных системах, но и в очень простых механических системах. Хорошим примером этого служит рассмотренная в преды

Линейные системы
Давайте теперь подытожим рассмотренные выше идеи, которые все являются аспектами, по-видимому, наиболее об­щего и удивительного принципа математической физики. Если у нас есть линейная система, хар

Музыкальные звуки
Говорят, что Пифагор первый обнаружил тот интересный факт, что одновременное зву­чание двух одинаковых струн различной длины приятнее для слуха, если длины этих струн относятся друг к другу

Ряд Фурье
В предыдущей главе мы познакомились с другой точкой зрения на колеблющуюся систему. Мы видели, что в струне воз­никают различные собственные гармоники и что любое частное колебание, которое только

Качество и гармония
Теперь мы уже можем описать, чем определяется «качество» музыкального тона. Оно определяется относительным количе­ством различных гармоник, т. е. относительными величинами а и b. Тон,

Коэффициенты Фурье
Вернемся теперь к утверждению о том, что каждую ноту, т. е. любое периодическое колебание, можно представить в виде надлежащей комбинации гармоник. Хотелось бы знать, как можно найти нужную

Теорема об энергии
Энергия волны пропорциональна квадрату ее амплитуды.

Нелинейная реакция
Наконец, в теории гармоник есть одно очень важное явление, которое необходимо отметить, учитывая его практическую важ­ность, но это уже относится к области нелинейных эффектов. Во всех рассмотренны

Волна от движущегося предмета
Мы закончили количественный анализ волн, но посвятим еще одну дополнительную главу некоторым качественным оценкам различных явлений, связанных с волнами; для подробного анализа они слишком сложны.

Ударные волны
Зачастую скорость волны зависит от ее амплитуды, и в слу­чае звука эта зависимость возникает следующим образом. Движущийся в воздухе предмет должен сдвигать его со своего пути, вызывая при этом воз

Волны в твердом теле
Следующий тип волн, о которых нам следует поговорить,- это волны в твердом теле. Мы уже рассмотрели звуковые волны в жидкости и газе, а между ними и звуковыми волнами в твер­дом теле имеется непоср

Поверхностные волны
Следующий интересный тип волн, которые, несомненно, видел каждый и которые обычно в элементарных курсах служат примером волн,- это волны на поверхности воды. Вы скоро убедитесь, что более неудачног

Симметрия и законы сохранения
Даже на этом уровне симметрии физических законов очень увлекательны, но оказывается, что они куда более интересны и удивительны при переходе к квантовой механике. Факт, причи­ну которого я не могу

Зеркальное отражение
Перейдем к следующему вопросу, который будет занимать нас до конца главы,- это симметрия при отражении в про­странстве. Проблема заключается в следующем: симметричны ли физические законы при

Полярный и аксиальный векторы
Пойдем дальше. Вы видели, что в физике имеется масса при­меров применимости правила правой и левой руки. В самом деле, когда мы изучали векторный анализ, то узнали о правиле пра­вой руки, которым н

Какая же рука правая?
Дело в том, что существует один интересный факт: в любом явлении правило правой руки всегда встречается два или вооб­ще четное число раз, и в результате любое явление всегда выглядит симметричным.

Четность не сохраняется!
Оказывается, что законы тяготения, законы электричества и маг

Антивещество
Когда исчезает одна из симметрии, то первым делом нуж­но немедленно обратиться к списку известных или предположен­ных симметрии и посмотреть, не может ли еще нарушиться ка­кая-то из них. Мы не упом

Нарушенная симметрия
А что нам делать с законами, которые только приблизительно симметричны? Самое удивительное здесь то, что в широкой об­ласти важнейших явлений-ядерные силы, электромагнитные явления и даже не

Термодинами́ческая Температу́рная шкала́ (Кельвина шкала), абсолютная шкала температур, не зависящая от свойств термометрического вещества (начало отсчета - абсолютный нуль температуры). Построение термодинамической температурной шкалы основано на втором начале термодинамики и, в частности, на независимости кпд Карно цикла от природы рабочего тела. Единица термодинамической температуры - кельвин (К)

Статистический вес и энтропия.

Энтропия - в естественных науках мера неупорядоченности системы, состоящей из многих элементов. В частности, в статистической физике - мера вероятности осуществления какого-либо макроскопического состояния.

Где - приращение энтропии; - минимальная теплота, подведённая системе; - абсолютная температура процесса.

Статистический вес в термодинамике и статистической физике - число способов, которыми может быть реализовано данное макроскопическое состояние системы. Статистический вес связан с энтропией S системы соотношением Больцмана ,

Где k = R/N = 1,38*10 -23 Дж/К

где k - фундаментальная мировая постоянная Больцмана;
R = 8,31 Дж/(моль*К) - молярная газовая постоянная;
N = 6,06*10 23 моль -1 - число Авогадро;
Р - статистический вес: число способов осуществления данного состояния.

Параметр S - энтропия - служит мерой рассеяния энергии Вселенной, а Р - характеризует любые самопроизвольные изменения, эта величина относится к миру атомов, определяющих скрытый механизм изменения.

Билет

Равновесное состояние. Диаграммы состояний. Уравнение состояния. Уравнение состояния разреженных газов. Идеальный газ. Уравнение состояния не разреженных газов (уравнение Ван-дер-Ваальса)

Равновесное состояние - состояние системы, при котором остаются неизменными по времени макроскопические величины этой системы (температура, давление, объём, энтропия) в условиях изолированности от окружающей среды. В общем, эти величины не являются постоянными, они лишь флуктуируют (колеблются) возле своих средних значений. Если равновесной системе соответствует несколько состояний, в каждом из которых система может находиться неопределенно долго, то о системе говорят, что она находится в метастабильном равновесии. В состоянии равновесия в системе отсутствуют потоки материи или энергии, неравновесные потенциалы (или движущие силы), изменения количества присутствующих фаз. Отличают тепловое, механическое, радиационное (лучистое) и химическое равновесия.



1)равновесие достигается в какой-либо части (или частях) относительно большой по размерам системы - локальное равновесие,

2)неполное равновесие достигается вследствие разности скоростей релаксационных процессов, протекающих в системе - частичное равновесие,

3)имеют место как локальное, так и частичное равновесие.

В неравновесных системах происходят изменения потоков материи или энергии, или, например, фаз.

Диаграммы состояний.

диаграмма равновесия, фазовая диаграмма, графическое изображение равновесных фазовых состояний одно- или многокомпонентных систем при разных значениях параметров, определяющих эти состояния. Диаграммы состояния изображают фазовый состав системы при разных концентрациях компонентов (Х), температурах (Т) и давлении (Р).

Диаграммы являются пространственными. Мерность пространства зависит от числа независимых переменных, функцией которых является фазовый состав. Диаграмма состояния может быть двумерной, трехмерной и многомерной. Переменные (Р, Т, Х) являются координатами, в которых строится диаграмма. Каждая точка диаграммы состояния (фигуративная точка) указывает на фазовый состав вещества при заданных значениях термодинамических параметров (координат этой точки). Когда система состоит только из одного компонента, диаграмма состояния представляет собой трехмерную пространственную фигуру, построенную в трех прямоугольных координатных осях, по которым откладывают температуру (Т), давление (Р) и мольный объем (v). На практике часто применяют проекцию диаграммы состояния на одну из координатных плоскостей, обычно на плоскость Р - Т.

Разреженные газы.

Разреженным в физике называют такое состояние газа, при котором средняя длина свободного пробега молекул превышает линейные размеры сосуда, содержащего газ. Это состояние называют также вакуумом. Поведение разреженных газов отличается целым рядом особенностей. Поскольку в вакууме молекулы газа пробегают расстояние от одной стенки до другой без столкновений, то не существует давления одной части газа на другую; можно говорить лишь о давлении газа на стенки сосуда. В разреженных газах не существует внутреннего трения и явления теплопроводности в обычном смысле. Физический вакуум при комнатных температурах реализуется в газах при давлении менее 10 -5 мм рт. ст., если газ находится в объеме с линейными размерами порядка метра.
В технике под вакуумом понимают состояние газа при давлении ниже атмосферного. Степень технического вакуума оценивается величиной давления остаточного газа.

Идеальный газ.

Идеальный газ - математическая модель газа, в которой предполагается, что:

1) потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией;

2) суммарный объём молекул газа пренебрежимо мал;

3) между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги;

4) время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.

В расширенной модели идеального газа частицы, из которого он состоит, имеют форму упругих сфер или эллипсоидов, что позволяет учитывать энергию не только поступательного, но и вращательно-колебательного движения, а также не только центральные, но и нецентральные столкновения частиц.

Уравнение состояния идеального газа(уравнение Клайперона)

Уравнение состояния не разреженных газов (уравнение Ван-дер-Ваальса ) ,

Билет.

Механическая форма передачи энергии телу. Работа. Тепловая форма передачи энергии телу. Теплота. Первое начало термодинамики. Равновесно совершемая работа, равновесно подводимая теплота

Возьмем закрытый сосуд с газом, и будем нагревать его, первоначально поместив в тающий лед. Температуру газа t определим с помощью термометра, а давление p манометром. С увеличением температуры газа его давление будет возрастать. Такую зависимость нашел французский физик Шарль. График зависимости p от t, построенный на основании такого опыта, имеет вид прямой линии.

Если продолжить график в область низких давлений, можно определить некоторую «гипотетическую» температуру, при которой давление газа стало бы равным нулю. Опыт показывает, что эта температура равна –273,15 °С и не зависит от свойств газа. Невозможно на опыте получить путем охлаждения газ в состоянии с нулевым давлением, так как при очень низких температурах все газы переходят в жидкие или твердые состояния. Давление идеального газа определяется ударами хаотически движущихся молекул о стенки сосуда. Значит, уменьшение давления при охлаждении газа объясняется уменьшением средней энергии поступательного движения молекул газа Е; давление газа будет равно нулю, когда станет равна нулю энергия поступательного движения молекул.

Английский физик У. Кельвин (Томсон) выдвинул идею о том, что полученное значение абсолютного нуля соответствует прекращению поступательного движения молекул всех веществ. Температуры ниже абсолютного нуля в природе быть не может. Это предельная температура при которой давление идеального газа равно нулю.

Температуру, при которой должно прекратиться поступательное движение молекул, называют абсолютным нулем (илинулем Кельвина).

Кельвин в 1848 г. предложил использовать точку нулевого давления газа для построения новой температурной шкалы – термодинамической шкалы температур (шкала Кельвина ). За начало отсчета по этой шкале принята температура абсолютного нуля.

В системе СИ принято единицу измерения температуры по шкале Кельвина называть кельвином и обозначать буквой К.

Размер градуса кельвина определяют так, чтобы он совпадал с градусом Цельсия, т.е 1К соответствует 1ºС.

Температура, отсчитанная по термодинамической шкале температур, обозначается Т. Её называют абсолютной температурой или термодинамической температурой .

Температурная шкала Кельвина называется абсолютной шкалой температур . Она оказывается наиболее удобной при построении физических теорий.

Кроме точки нулевого давления газа, которая называется абсолютным нулем температуры , достаточно принять еще одну фиксированную опорную точку. В шкале Кельвина в качестве такой точки используется температура тройной точки воды (0,01 °С), в которой в тепловом равновесии находятся все три фазы – лед, вода и пар. По шкале Кельвина температура тройной точки принимается равной 273,16 К.



Связь между абсолютной температурой и температурой по шкале Цельсия выражается формулой Т = 273,16 + t , где t – температура в градусах Цельсия.

Чаще пользуются приближенной формулой Т = 273 + t и t = Т – 273

Абсолютная температура не может быть отрицательной.

2. Электромагнитное поле и электромагнитные волны. Скорость электромагнитных волн.

1. Переменное магнитное поле создает вихревое электрическое поле.

2. Переменное электрическое поле создает вихревое магнитное поле.

Электромагнитное поле

Это особая форма материи - совокупность электрических и магнитных полей.

Переменные электрические и магнитные поля существуют одновременно и образуют единое электромагнитное ноле.