Как называется стрелка указывающая направление ветра. Скорость направления ветра

Движущийся в определенном направлении. На других планетах он представляет собой массу свойственных их поверхности газов. На Земле ветер движется преимущественно горизонтально. Классификация, как правило, осуществляется в соответствии со скоростью, масштабом, типами сил, их вызывающими, местам распространения. Под влиянием потоков находятся различные природные явления и погода. Ветер способствует переносу пыли, семян растений, способствует перемещению летающих животных. Но как появляется направленный воздушный поток? Откуда дует ветер? От чего зависит его продолжительность и сила? И вообще, почему ветры дуют? Об этом и многом другом - далее в статье.

Классификация

В первую очередь ветры характеризуют по силе, направлению и продолжительности. Порывами считаются сильные и кратковременные перемещения (до нескольких секунд) воздушных потоков. Если дует сильный ветер средней продолжительности (примерно минуту), то его называют шквалом. Более продолжительные воздушные потоки называют в соответствии с их силой. Так, к примеру, легкий ветер, дующий на побережье, - это бриз. Есть еще тайфун, Продолжительность ветров может быть также различной. Некоторые длятся несколько минут, например. Бриз, зависящий от перепада температур на поверхности рельефа в течение суток, может продолжаться до нескольких часов. Местная и общая циркуляция атмосферы складываются из пассатов и муссонов. Оба этих типа относятся к категории "глобальных" ветров. Муссоны вызваны сезонными изменениями в температуре и имеют продолжительность до нескольких месяцев. Пассаты - это постоянно перемещающиеся. Они обусловлены разницами температур на различных широтах.

Как объяснить ребенку, почему дует ветер?

Для детей в раннем возрасте это явление представляет отдельный интерес. Ребенок не понимает, где образуется поток воздуха, из-за чего в одном месте он есть, а в другом - нет. Достаточно просто объяснить малышу, что зимой, например, дует холодный ветер из-за низкой температуры. Как же происходит этот процесс? Известно, что воздушный поток представляет собой массу молекул газов атмосферы, совместно перемещающихся в одном направлении. Небольшой по объему воздушный поток, обдувая может свистеть, срывать шапки с прохожих. Но если масса газовых молекул обладает большим объемом и шириной в несколько километров, то она может покрыть достаточно большое расстояние. В закрытых помещениях воздух практически не перемещается. И о его существовании можно даже и забыть. Но если выставить, например, руку из окна движущегося автомобиля, то можно кожей ощутить воздушный поток, его силу и давление. Откуда дует ветер? Движение потока осуществляется вследствие разницы давления в разных участках атмосферы. Рассмотрим этот процесс более подробно.

Разница атмосферного давления

Так почему дует ветер? Для детей лучше привести в пример плотину. С одной стороны высота столба воды, к примеру, три, а с другой - шесть метров. При открытии шлюзов вода перетечет в тот участок, где ее меньше. Примерно то же самое происходит и с воздушными потоками. В разных частях атмосферы давление различно. Это обусловлено разницей в температуре. В теплом воздухе движение молекул осуществляется быстрее. Частицы стремятся разлететься друг от друга в разные стороны. В связи с этим теплый воздух больше разряжен и весит меньше. В результате давление, которое в нем создается, снижается. Если же температура понижена, то молекулы образуют более тесные скопления. Воздух, соответственно, весит больше. Давление при этом повышается. Аналогично воде, воздух обладает свойством перетекать из одной зоны в другую. Так, поток переходит из участка с повышенным давлением в область с пониженным. Вот почему ветры дуют.

Движение потоков около водоемов

Почему ветер дует с моря? Рассмотрим пример. В солнечный день лучи прогревают и берег, и водоем. Но вода нагревается намного медленнее. Это связано с тем, что поверхностные теплые слои незамедлительно начинают смешиваться с более глубокими, и потому холодными слоями. А вот берег нагревается намного быстрее. И воздух над ним более разряжен, а давление, соответственно, ниже. Атмосферные потоки устремляются от водоема к берегу - в более свободную область. Там они, нагреваясь, поднимаются вверх, снова освобождая место. Вместо них появляется снова прохладный поток. Вот так происходит циркуляция воздуха. На пляже отдыхающие могут периодически чувствовать легкий прохладный ветерок.

Значение ветров

Выяснив, почему ветры дуют, следует сказать о том, какое воздействие они оказывают на жизнь на Земле. Ветер имеет большое значение для человеческой цивилизации. Вихревые потоки вдохновляли людей на создание мифологических произведений, расширяли торговый и культурный диапазон, воздействовали на исторические явления. Ветры также выступали в качестве поставщиков энергии для разных механизмов и агрегатов. За счет движения потоков воздуха получили возможность преодолевать значительные расстояния по океанам и морям, а воздушные шары - по небу. Для современных летательных аппаратов ветры имеют большое практическое значение - они позволяют экономить топливо и увеличивать Но следует сказать, что воздушные потоки могут приносить и вред человеку. Так, например, из-за градиентных колебаний ветра может быть потерян контроль над управлением самолета. В небольших водоемах быстрые воздушные потоки и вызванные ими волны могут разрушить постройки. Во многих случаях ветры способствуют увеличению масштаба пожара. В целом, явления, связанные с образованием воздушных потоков, различными способами воздействуют на живую природу.

Глобальные эффекты

Во многих районах планеты преобладают воздушные массы, обладающие определенным направлением движения. В районе полюсов, как правило, преобладают восточные, а в умеренных широтах - западные ветры. При этом в тропиках воздушные потоки принимают снова восточное направление. На границах между данными зонами - субтропическом хребте и полярном фронте - расположены так называемые области затишья. Преобладающие ветры в этих зонах практически отсутствуют. Здесь движение воздуха осуществляется главным образом вертикально. Это объясняет появление зон высокой влажности (близ полярного фронта) и пустынь (около субтропического хребта).

Тропики

В этой части планеты в западном направлении дуют пассаты, приближаясь к экватору. За счет постоянного перемещения этих воздушных потоков происходит перемешивание атмосферных масс на Земле. Это может проявляться в значительных масштабах. Так, к примеру, пассаты, перемещающиеся над Атлантическим океаном, переносят пыль с африканских пустынных территорий в Вест-Индию и некоторые районы Северной Америки.

Локальные эффекты формирования воздушных масс

Выясняя, почему ветры дуют, следует сказать и о влиянии наличия тех или иных географических объектов. Одним из локальных эффектов формирования воздушных масс считается температурный перепад между не слишком удаленными участками. Он может быть спровоцирован разными коэффициентами поглощения света либо различной теплоемкостью поверхности. Сильнее всего последний эффект проявляется между и сушей. В результате возникает бриз. Еще одним локальным фактором, представляющим важность, является присутствие горных систем.

Влияние гор

Эти системы могут представлять собой некий барьер на пути движения воздушных потоков. Кроме этого, горы во многих случаях сами вызывают ветрообразование. Воздух над взгорьями прогревается сильнее, чем атмосферные массы над низменностями на той же высоте. Это способствует формированию зон пониженного давления над горными хребтами и ветрообразованию. Данный эффект часто провоцирует появление горно-долинных атмосферных движущихся масс. Такие ветры преобладают в областях с пересеченной местностью.

Повышение трения у долинной поверхности приводит к отклонению параллельно направленного воздушного потока на высоту расположенных рядом гор. Это способствует формированию струйного высотного течения. Скорость этого потока может превышать силу окружающего ветра до 45%. Как было выше сказано, горы могут выступать в качестве препятствия. При обходе цепи поток меняет свое направление и силу. Перепады в горных хребтах оказывают существенное влияние на движение ветра. Например, если в горной цепи, которую преодолевает атмосферная масса, есть перевал, то поток проходит его с заметным увеличением скорости. В этом случае работает эффект Бернулли. Необходимо отметить, что даже незначительные перепады высот вызывают колебания Из-за существенного градиента скорости воздуха поток становится турбулентным и продолжает таким оставаться даже за горой на равнине на определенном расстоянии. Такие эффекты представляют в некоторых случаях особое значение. Например, они важны для самолетов, осуществляющих взлет и посадку на горных аэродромах.

По «Авиационной метеорологии»

Тема 1 «Строение атмосферы» (1 час).

Различные классификации слоев атмосферы.

Международная стандартная атмосфера.

Различные классификации слоев атмосферы

1.Деление атмосферы на слои, в основу которой положено деление температуры по вертикали:

а).Тропосфера (0-11км).

Температура понижается с высотой (6,5* на 1000м): от 8*-10* (на полюсах) до 16*-18* (в тропиках).

Нижний слой тропосферы (пограничный, или слой трения) - до 1-1,5 км. В этом слое особенно сильно проявляется влияние земной поверхности.

Ниже нижнего слоя находится приземный слой (до 200 м).

б).Стратосфера (до высоты 50 км).

Температура в стратосфере постоянная (-56*), но потом начинает повышаться (до +20*).

в).Мезосфера (до 50-80 км).

Температура начинает уменьшаться (3,5* на 1 км).

г).Термосфера (до 800 км).

Температура очень быстро повышается и достигает 100*.

д).Экзосфера (более 800 км).

Температура выше 100*С.

2.Деление атмосферы на слои по составу воздуха.

а).Гомосфера - слой, где состав воздуха постоянен.

б).Гетеросфера - слой, где состав воздуха меняется с высотой.

в).Озоносфера - сильно разряженный воздух, озоновый слой (от 15 до 50 км).

3.Деление атмосферы на слои по признаку взаимодействия с земной поверхностью:

а).Пограничный слой (1-1,5 км).

б).Свободная атмосфера.

Международная стандартная атмосфера.

Стандартная атмосфера - это условное распределение по высоте средних значений основных физических параметров атмосферы (давление, температура, плотность, скорость звука для сухого и чистого воздуха постоянного состава, показатель которой используется при расчетах при приведении результатов испытаний к одинаковым условиям).

ГОСТ МСА:

Н = 2км - 50 км;

широта - 45*32 33;

t*C = 15*С (Т=288,15К);

ВТГ (вертикальный температурный градиент) - 6,5* на 1 км;

P(давление) = 760 мм рт. ст.(1013,25 гПа);

p(плотность воздуха) = 1,225 кг на кубический метр;

при этом показания ВТГ, Р, p даны на высоте Н=0.

Все важнейшие для летчика явления погоды развиваются главным образом в тропосфере.



Масса атмосферы составляет 5,27х10 в 15 степени тонн.

Тема 2 «Метеорологические элементы

И их анализ. Метеокоды и карты погоды».

Общие положения;

Метеорологические элементы:

а) атмосферное давление и плотность воздуха;

б) температура воздуха;

в) плотность и влажность воздуха;

г) направление и скорость ветра;

д) количество, форма и высота облаков и осадки;

е) видимость;

Явления погоды:

а) туманы и дымки;

б) обледенения;

в) грозы и шквалы;

Карты погоды:

а) приземные карты;

б) высотные карты.

Состояние атмосферы в определенный момент времени характеризуется рядом физических величин, которые называются метеоэлементами или параметрами (атмосферное давление, температура, плотность и влажность воздуха, направление и скорость ветра, количество, форма и высота облаков).

Кроме метеорологических элементов авиационной метеорологией изучаются и атмосферные явления (гроза, метель, туман и т.д.).

Совокупность метеоэлементов и атмосферных явлений, наблюдаемых в какой-либо момент или промежуток времени, называется погодой.

Основные параметры атмосферы оказывают влияние на часовой расход топлива, силу тяги двигателей, скороподъемность и потолок ВС, его устойчивость, длину разбега и пробег.

Метеорологические элементы.

Атмосферное давление

Это вес столба воздуха от данной поверхности до верхней границы атмосферы на 1 кв.см. поперечного сечения этого столба; атмосферное давление измеряется ртутным барометром, для нужд авиации - в миллиметрах ртутного столба, а для нужд погоды - в миллибарах (мб). Соотношение между этими единицами следующее: 1мб соответствует 0,75 мм рт. ст. (3/4), 1 мм рт. ст. соответствует 1,33 мб (4/3).

Стандартное атмосферное давление составляет 760 мм рт. ст. (при температуре 0* на широте 45*), что равно 1013,25 мб.

Для характеристики атмосферного давления используется такое понятие, как барический градиент. Барический градиент - изменение давления на единицу длины (используется для характеристики изменения давления с высотой и по горизонтали).

Положительный барический градиент направлен в сторону падения давления по кратчайшему пути.

Для характеристики изменения давления с высотой применяется барическая ступень. Барическая ступень - это расстояние по вертикали в метрах, на котором давление изменяется на 1 мм рт. ст. или на 1 мб, т.е. высота, на которую нужно подняться или опуститься, чтобы давление изменилось на 1 единицу. Так вблизи земли следует подняться в среднем на 8м, чтобы давление изменилось на 1 мм, на высоте 5 км - на 15м, а на высоте 18 км - на 70-80м.

Величина барической ступени зависит от давления и температуры: с увеличением давления и понижением температуры она уменьшается, с уменьшением давления и повышением температуры - увеличивается.

Влияние атмосферного давления на полет:

1).необходимо учитывать изменение давления при определении высоты полета;

2).рост атмосферного давления приводит к уменьшению скорости отрыва;

Значения атмосферного давления наносятся на синоптическую карту в виде линий равного атмосферного давления, называемых изобарами.

При оценке атмосферного давления следует учитывать барометрическую тенденцию, т.е. изменение атмосферного давления за последние 3 часа.

Плотность воздуха

Это отношение массы воздуха к объему, который он занимает, выраженное в г/куб.м. Плотность воздуха может быть вычислена, если известны давление воздуха и его температура. Она увеличивается с понижением температуры и увеличением давления, и наоборот.

Плотность воздуха зависит также от количества водяного пара в воздухе. Плотность водяного пара меньше плотности сухого воздуха, и поэтому влажный воздух при том же давлении будет иметь меньшую плотность, чем сухой. Так, при давлении 750 мм рт. ст. и температуре 20*С, плотность сухого воздуха составляет 1189 г/куб.м, а плотность насыщенного водяным паром воздуха при тех же условиях составляет 1178 г/куб.м, т.е. на 11 г/куб.м меньше.

Плотность изменяется в течение года в зависимости от географической широты, а также от изменения температуры и давления воздуха. В тропосфере плотность воздуха в общем меньше летом и больше зимой.

С высотой плотность воздуха уменьшается. Это уменьшение в основном определяется изменением атмосферного давления.

Давление, плотность и температура воздуха являются основными физическими параметрами, характеризующими воздух как среду, в которой происходит полет ЛА.

Температура воздуха

Это параметр, характеризующий степень нагретости воздуха.

Температура воздуха измеряется на Н=2м жидкостными термометрами.

В большинстве стран применяется стоградусная шкала (шкала Цельсия - *С), в которой за 0*С принята температура таяния льда, а за +100*С - температура кипения воды при давлении 760 мм рт.ст. В теоретической метеорологии, аэродинамике и других научных дисциплинах применяется абсолютная шкала температуры (Т), предложенная Кельвином (К*). Температуры по шкале Кельвина и Цельсия связаны соотношением:

Т= 273,15 + t*С,

где величина 273,15 называется абсолютным нулем температуры, а t* - температура по стоградусной шкале Цельсия.

Температура воздуха - это очень изменчивый метеоэлемент, зависящий от множества факторов: от количества тепла, поступающего на данной географической широте от Солнца, от характера подстилающей поверхности, от времени года и суток, от циркуляции атмосферы и т.д.

Под влиянием этих факторов температура испытывает периодические (суточные и годовые) и непериодические колебания.

Амплитуда суточного хода температур - это разность между максимальной и минимальной температурой в течение суток.

Годовая амплитуда температур - это разность между максимальной и минимальной температурой в течение года.

Правильный суточный ход температур - наиболее высокая температура от 13 до 15 часов местного времени, минимальная - перед восходом солнца.

Нагревание и охлаждение воздуха происходит от поверхности Земли. Воздух прогревается снизу вверх, поднимается, одновременно более холодный воздух опускается вниз сжимаясь. В результате происходит перемешивание воздуха по вертикали.

Повышение температуры с высотой в некотором слое называется инверсией. Слой, где температура воздуха не изменяется с высотой, называется изометрией. Инверсию и

изометрию называют задерживающими слоями, т.к. они затрудняют вертикальное движение воздуха. Эти слои регулярно наблюдаются на разных слоях в тропосфере, особенно в холодную половину года и в ночное время. Эти слои оказывают существенное влияние на формирование погоды. Под ними всегда может быть облачность, ухудшенная видимость, обледенение, болтанка, сдвиг ветра.

Изменение температуры с высотой на каждые 100м называется вертикальным температурным градиентом. По МСА в тропосфере вертикальный градиент температуры равен 0,65* при подъеме на 100м.

Температура воздуха наносится на карту погоды в виде сплошных линий равных температур - изотерм.

Влияние температуры воздуха на работу авиации значительное. Температура воздуха влияет на потребную и максимальную скорость полета, скороподъемность и потолок, мощность и тягу двигателей, длину разбега и пробега, показания приборов.

Высокие и низкие температуры у земли затрудняют работу техсостава по подготовке техники, при сильных морозах затрудняется запуск авиационных двигателей.

Отрицательное влияние на эксплуатацию авиатехники оказывают также резкие перепады температуры воздуха, особенно когда после сильных морозов наступает оттепель.

При положительных отклонениях температуры воздуха от данных МСА летные характеристики самолетов ухудшаются, а при отрицательных отклонениях - улучшаются.

При температуре воздуха у земли 0*С - (-3*С) на РД, ВПП, наземных сооружениях возможен гололед; при полете в облаках, осадках, где температура 0*С- (-10*С), возникает обледенение. При полете в воздушной массе, где вертикальный градиент температуры больше, чем 0,65* на 100м, отмечается болтанка, возникают грозы и явления с ней связанные.

Влажность воздуха

Это степень насыщения воздуха водяным паром. Она является важной величиной в оценке погоды, т.к. способствует образованию облаков, осадков, туманов, гроз и т.д.

Для оценки содержания водяного пара в воздухе применяются различные характеристики.

Абсолютная влажность (а) - количество водяного пара, содержащегося в 1 куб. метре, выраженное в граммах.

Упругость водяного пара (е) - парциальное давление водяного пара, содержащегося в воздухе, выражающееся в мм рт. ст. или мб. Численно обе эти величины близки между собой.

Абсолютную влажность в основном учитывают в весенне-летний период при прогнозировании гроз. Если а=15мб, следует ожидать грозу; а=20мб - гроза будет с ливневыми осадками, а больше 23мб - гроза будет со шквалом.

Относительная влажность (r) - процентное отношение фактического количества водяного пара в данном объеме воздуха к количеству водяного пара, насыщающего этот объем воздуха при той же температуре, выраженное в процентах:

r =------- х 100%, где

а - фактическое количество водяного пара;

А - максимально возможное количество водяного пара при данной температуре воздуха.

Максимальное количество водяного пара, которое может содержаться в воздухе (относительная влажность 100%), зависит только от температуры: чем выше температура, тем больше водяного пара необходимо для насыщения, и наоборот.

На приземных картах погоды вместо рассмотренных выше величин влажности воздуха наносится точка росы (t*d) - температура, при которой воздух достигает состояния насыщения при данном содержании водяного пара и неизменном давлении. Точка росы равна температуре воздуха при относительной влажности 100%. При этих условиях происходит конденсация водяного пара (переход водяного пара в жидкое состояние) и образование облаков и туманов. Чем суше воздух, тем больше разность между температурой воздуха и точкой росы (дефицит точки росы - дельта td).Охлаждение воздуха, содержащего водяной пар, может вызвать сублимацию (переход водяного пара в твердое состояние, минуя жидкую фазу).

Дефицит точки росы наносится на картах абсолютной топографии и служит для определения возможности образования облаков. На высотах до 5 км можно предполагать наличие 10 баллов облаков при дефицитах 0*, 1*, 2*. По дефициту можно определить уровень конденсации водяного пара, т.е. уровень, где воздух достигает 100% насыщения:

hк= 123 (t*C-t*d),

где hк - уровень конденсации.

Водяной пар играет исключительно важную роль в определении метеорологических условий полета в тропосфере. Наличие водяного пара в атмосфере является необходимым условием образования облаков, осадков, туманов. Атмосферные явления - грозы, метели, обледенение и такие оптические явления, как радуга, гало, венцы, - также неразрывно связаны с наличием воды в атмосфере. Такой важный метеорологический элемент, как видимость, в большинстве случаев обуславливается наличием в атмосфере мельчайших капель воды, кристаллов льда или тех и других вместе.

Направление и скорость ветра.

Ветром называется горизонтальное движение воздуха относительно земной поверхности. Но воздушные потоки не строго горизонтальны, т.к. почти всегда в этих движениях есть вертикальные составляющие.

Ветер - величина векторная и определяется двумя составляющими: направлением и скоростью.

Направление ветра - азимут точки горизонта, откуда дует ветер, измеряется в градусах.

Скорость ветра - скорость перемещения воздуха за выбранный интервал времени. Обычно измеряется в метрах в секунду. Для авиационных расчетов скорость ветра выражают в километрах в час. (1 м/сек = 3,6 км/час). Со скоростью ветра неразрывно связано понятие силы ветра:

2-3 м/сек - слабый (чуть ощущается);

4-7 м/сек - умеренный (качаются тонкие ветви деревьев);

10-12 м/сек - сильный (качаются толстые ветви деревьев);

Больше 15 м/сек - буря;

Больше 20 м/сек - шторм;

30 м/сек - ураган.

Ветер не является устойчивым течением и в короткие промежутки времени изменяется как по скорости, так и по направлению. Эта изменчивость ветра особенно резко выражается вблизи поверхности земли и непосредственно связана с турбулентным состоянием воздушного потока.

Движение воздуха происходит под действием силы вращения земли (кориолисова сила), силы барического градиента, возникающей вследствие неравномерного распределения давления воздуха в горизонтальном направлении, силы трения и силы тяжести.

Под воздействием этих сил в слое до 1000-1500м вектор времени направлен к изобаре под острым углом, величина которого больше над сушей и меньше над морем, больше в низких широтах и уменьшается к полюсам.

В циклоне в Северном полушарии ветры у земли дуют по спирали от периферии к центру против часовой стрелки, в антициклоне - по спирали от центра к периферии по часовой стрелке.

Скорость и направление ветра зависят от высоты над поверхностью земли, географического района, времени года и суток, от распределения давления.

Суточный ход скорости ветра у земли наиболее четко выражен над сушей и почти незаметен над морем. Более резко он выражен в теплую половину года и при ясной погоде, слабее - в холодную и при облачной погоде.

С увеличением высоты скорость ветра в среднем возрастает, и на высоте 500 м она выше почти вдвое, чем у земли; в слое трения ветер поворачивает вправо, а в свободной атмосфере дует почти строго вдоль изобар (если встать спиной к ветру, то меньшее давление будет слева).

Ветер имеет большое значение для авиации:

Ветер существенно влияет на взлет и посадку, при встречном ветре сокращается длина разбега и пробега;

При боковом ветре возникают силы, затрудняющие управление ЛА. Так, например, если ветер дует справа от направления взлета, то на правой плоскости возникает дополнительная подъемная сила, а на левой она уменьшается, в результате возникает кренящий момент; кроме того, боковой ветер создает силу, стремящуюся развернуть ЛА относительно его продольной оси, а следовательно - и в сторону от оси ВПП;

Еще большие трудности боковой ветер создает при посадке ЛА, т.к. затрудняет точное выдерживание ЛА на глиссаде снижения и во время пробега на ВПП;

Ветер значительно влияет на самолетовождение (необходима поправка на ветер при выдерживании направления);

Ветер вызывает болтанку, пыльные бури, низовые метели, ухудшающие видимость и затрудняющие взлет, полет, посадку ВС.

При оценке конкретных метеоусловий необходимо учитывать местные ветры, которые возникают под влиянием местных физико-географических и термических условий.

Серьезные трудности для пилотирования ЛА на глиссаде снижения, при взлете, посадке вызывает

сдвиг ветра.

Под сдвигом ветра понимается изменение направления или скорости ветра, или того и другого вместе в горизонтальном направлении, либо одного слоя атмосферы по отношению к другому по вертикали.

Различают горизонтальный и вертикальный сдвиги ветра:

Вертикальный сдвиг ветра (вертикальная составляющая градиента ветра) - это изменение направления и скорости ветра по высоте (например, на Н=200м направление ветра 280* и его скорость 18 м/сек, а на Н=100м направление ветра 80* и скорость 8 м/сек).

Горизонтальный сдвиг ветра (горизонтальная составляющая градиента ветра) - изменение направления и скорости ветра в различных точках по горизонтали на одной и той же высоте.

Для оценки интенсивности сдвига ветра следует пользоваться терминами и их численными категориями, которые рекомендованы ИКАО (смотреть Таблицу 1).


Ветром называют движение воздуха относительно земной поверхности, причем имеется в виду горизонтальная составляющая этого движения. Ветер характеризуется вектором скорости, но на практике под скоростью подразумевается только числовая величина скорости, направление вектора скорости называют направлением ветра. Скорость ветра выражается в метрах в секунду, в км/ч и в узлах (морская миля в час). Чтобы перевести скорость из метров в секунду в узлы, достаточно умножить число метров в секунду на 2.

Существует еще одна оценка скорости или, как принято говорить в этом случае, силы ветра в баллах, шкала Бофорта, по которой весь интервал возможных скоростей ветра делится на 12 градаций. Эта шкала связывает силу ветра с различными эффектами, производимыми ветром разной скорости, такими, как степень волнения на море, качание ветвей деревьев, распространение дыма из труб. Каждая градация скорости ветра имеет определенное название (смотри таблицу с характеристиками ветра по шкале Бофорта).

Таблица 1 - Характеристика скорости ветра по шкале Бофорта

Скорость ветра

Внешние признаки

Характеристика ветра

Полное отсутствие ветра. Дым поднимается отвесно.

Дым отклоняется от вертикального направления, позволяя определить направление ветра. Зажженная спичка не гаснет, но пламя заметно отклоняется

Движение воздуха можно определить лицом. Шелестят листья. Пламя зажженной спички быстро гаснет.

Заметно колебание листьев деревьев. Развеваются легкие флаги.

умеренный

Колеблются тонкие ветки. Поднимается пыль, клочки бумаги.

Колеблются большие ветки. На воде поднимаются волны.

Раскачиваются большие ветки. Гудят провода.

Качаются стволы небольших деревьев. На водоемах пенятся волны.

Ломаются ветви. Движение человека против ветра затруднено. Опасен для судов, буровых вышек и сходных сооружений.

сильная буря

Срываются домовые трубы и черепица с крыши, повреждаются легкие постройки.

полная буря

Деревья вырываются с корнем, происходят значительные разрушения легких построек.

Ветер производит большие разрушения легких построек.

Ветер производит огромные разрушения

Для более полной оценки производимых сильными ветрами разрушений американской Национальной службой погоды шкала Бофорта была дополнена:

  • - 12.1 баллов, скорость ветра 35 - 42м/с. Сильный ветровал. Значительные разрушения легких деревянных построек. Валятся некоторые телеграфные столбы.
  • - 12.2. 42-49 м/с. Разрушаются до 50% легких деревянных построек, в прочих постройках - повреждения дверей, крыш, окон. Штормовой нагон воды на 1,6-2,4 м выше нормального уровня моря.
  • - 12.3. 49-58 м/с. Полное разрушение легких домов. В прочных постройках - большие повреждения. Штормовой нагон - на 1,5-3.5 м выше нормального уровня моря. Серьезное нагонное наводнение, повреждение зданий водой.
  • - 12.4. 58-70 м/с. Полный ветровал деревьев. Полное разрушение легких и сильное повреждение прочных построек. Штормовой нагон - на 3,5-5,5 м выше нормального уровня моря. Сильная абразия берегов. Сильные повреждения нижних этажей зданий водой.
  • - 12.5. более 70 м/с. Многие прочные постройки разрушаются ветром, при скорости 80-100 м/с - также каменные, при скорости 110 м/с - практически все. Штормовой нагон выше 5,5 м. Интенсивные разрушения наводнением.

Скорость ветра на метеостанциях измеряют анемометрами; если прибор самопишущий, то он называется анемографом. Анеморумбограф определяет не только скорость, но и направление ветра в режиме постоянной регистрации. Приборы для измерения скорости ветра устанавливают на высоте 10-15 м над поверхностью, и измеренный ими ветер называется ветром у земной поверхности. Направление ветра определяют, назвав точку горизонта, откуда дует ветер или угол, образуемый направлением ветра с меридианом места, откуда дует ветер, т.е. его азимут. В первом случае различают 8 основных румбов горизонта: север, северо-восток, восток, юго-восток, юг, юго-запад, запад, северо-запад и 8 промежуточных.

8 основных румбов направления имеют следующие сокращения (русские и международные): С-N, Ю-S, З-W, В-E, СЗ-NW, СВ-NE, ЮЗ-SW, ЮВ-SE.

Если направление ветра характеризуется углом, то отсчет ведется от севера по часовой стрелке. В этом случае, север будет соответствовать 00 (360), северо-восток - 450, восток - 900, юг - 1800, запад - 2700.

При климатологической обработке наблюдений над ветром строят для каждого пункта диаграмму, представляющую собой распределение повторяемости направлений ветра по основным румбам - «розу ветров».

От начала полярных координат откладывают направление по румбам горизонта отрезками, длины которых пропорциональны повторяемости ветров данного направления. Концы отрезков соединяются ломаной линией. Повторяемость штилей указывают числом в центре диаграммы. При построении розы ветров можно учесть и среднюю скорость ветра по каждому направлению, умножив на нее повторяемость данного направления, тогда график покажет в условных единицах количество воздуха, переносимого ветрами каждого направления.


Сила ветра. Она определяется давлением, которое оказывает движущийся воздух на предметы и замеряется в кг/м 2 . Сила ветра (Р) зависит от скорости: Р = 0,25 V 2 . Сила ветра зависит еще и от плотности воздуха, При одинаковой скорости ветра у земной поверхности и в верхней тропосфере сила его вверху в 5 раз меньше, чем у поверхности. Обычно, чем меньше плотность, тем больше скорость ветра. Поэтому с высотой скорость ветра возрастает, к тому же этому способствует отсутствие трения о подстилающую поверхность.

Направление ветра. Это сторона света, откуда дует ветер. Указать это направление, значит, назвать либо точку горизонта, откуда дует ветер, либо азимут этого направления. В первом случае различают 8 основных румбов горизонта и 8 промежуточных румбов.

Также как и для скорости, различают мгновенное и сглаженное направление ветра. Для анализа результатов наблюдений за направлением ветра строят специальные диаграммы «розу ветров» , на которой показывается повторяемость направлений ветра за месяц, год.

Диаграмма "роза ветров" (повторяемость ветров разных направлений в днях)

Направление ветра и его сила зависит в первую очередь от барического градиента. Только сила барического градиента приводит воздух в движение и увеличивает его скорость. Все другие силы, проявляющиеся при движении воздуха, могут лишь тормозить движение и отклонять его направление от направления барического градиента. Но, если бы на воздух действовала только сила барического градиента, то движение воздуха было бы равномерно ускоренным. Хотя это ускорение не велико, но при длительном действии скорость ветра могла бы достичь больших значений. Силой, уравновешивающей силу барического градиента , является сила Кориолиса, отклоняющая сила вращения Земли. Она равна нулю на экваторе и имеет наибольшую величину на полюсах. Она относится только к движущимся телам. В определенных условиях сила Кориолиса может уравновесить силу барического градиента. Когда эти две силы уравновесятся, то воздух будет двигаться прямолинейно и равномерно без трения. Такие условия появляются на высоте более 1000 м (нет трения о подстилающую поверхность). Такой ветер называется геострофическим.

Геострофический ветер дует вдоль изобар, оставляя низкое давление в северном полушарии слева, в южном полушарии – справа.

Скорость геострофического ветра прямо пропорциональна величине барического градиента. Чем гуще изобары, тем сильнее ветер.

Если движение воздуха происходит без действия силы трения по криволинейным изобарам, то кроме силы градиента и силы Кориолиса, появляется еще и центробежная сила. Направлена центробежная сила по радиусу кривизны в сторону выпуклости траектории. Ветер, дующий по криволинейным траекториям без влияния трения называют градиентным ветром .

Градиентный ветер направлен, как и геострофический ветер, по изобарам, только по круговым. Отсюда, в циклоне (Z) ветер будет дуть против часовой стрелки, в антициклоне (Az) – по часовой стрелке. Это относится к северному полушарию. В южном полушарии направления ветра в циклоне и антициклоне изменяются на противоположные.

Литература

  1. Зубащенко Е.М. Региональная физическая география. Климаты Земли: учебно-методическое пособие. Часть 1. / Е.М. Зубащенко, В.И. Шмыков, А.Я. Немыкин, Н.В. Полякова. – Воронеж: ВГПУ, 2007. – 183 с.

Ветер – это горизонтальное перемещение (поток воздуха параллельно земной поверхности), возникающее в результате неравномерного распределения тепла и атмосферного давления и направленное из зоны высокого давления в зону низкого давления

Ветер характеризуется скоростью (силой) и направлением. Направление определяется сторонами горизонта, откуда он дует, и измеряется в градусах. Скорость ветра измеряется в метрах в секунду и километрах в час. Сила ветра измеряется в баллах.

Ветер в ботфортах, м/с, км/час

Шкала Бофорта - условная шкaлa для визуальной оценки и записи силы (скорости) ветра в баллах. Первоначально, была разработана английским адмиралом Френсисом Бофортом в 1806 г. для определения силы ветра по характеру её проявления на море. С 1874 г. данная классификация принята для повсеместного (на суше и на море) использования в международной синоптической практике. В последующие годы менялась и уточнялась (таблица 2). За ноль баллов было принято состояние полного штиля на море. Изначально система была тринадцатибальная (0-12 bft, по шкале Бофорта). В 1946г. шкалу увеличили до семнадцати (0-17). Сила ветра в шкале определяется по взаимодействию ветра с различными предметами. В последние годы, силу ветра, чаще, оценивают по скорости, измеряемой в метрах в секунду - у земной поверхности, на высоте порядка 10м над открытой, ровной поверхностью.

В таблице приведена шкала Бофорта, принятая в 1963 году Всемирной метеорологической организацией. Шкала волнения на море - девятибальная (параметры даны для большой морской акватории; на малых акваториях - волнение меньше). Описания действия от перемещения воздушных масс - даны "для условий земной атмосферы вблизи земной или водной поверхности", при плотности воздуха, около 1,2 кг/м3 и плюсовой температуре. На планете Марс, к примеру - соотношения будут другими.

Сила ветра в баллах по шкале Бофорта и морское волнение

таблица 1

Баллы Словесное обозначение силы ветра Скорость ветра, м/с Скорость ветра км/ч

Действие ветра

на суше

на море (баллы, волнение, характеристика, высота и длина волны)

0 Штиль 0-0,2 Менее 1 Полное отсутствие ветра. Дым поднимается вертикально, листья деревьев неподвижны. 0. Волнение отсутствует
Зеркально гладкое море
1 Тихий 0,3-1,5 2-5 Дым слегка отклоняется от вертикального направления, листья деревьев неподвижны 1. Слабое волнение.
На море лёгкая рябь, пены на гребнях нет. Высота волн 0,1 м, длина - 0,3м.
2 Легкий 1,6-3,3 6-11 Ветер чувствуется лицом, листья временами слабо шелестят, флюгер начинает двигаться, 2. Слабое волнение
Гребни не опрокидываются и кажутся стекловидными. На море короткие волны высотой 0,3 м. и длиной - 1-2м.
3 Слабый 3,4-5,4 12-19 Листья и тонкие ветки деревьев с листвой непрерывно колеблются, колышутся лёгкие флаги. Дым как бы слизывается с верхушки трубы (при скорости более 4 м/сек). 3. Легкое волнение
Короткие, хорошо выраженные волны. Гребни, опрокидываясь, образуют стекловидную пену, изредка образуются маленькие белые барашки. Средняя высота волн 0,6-1 м, длина - 6м.
4 Умеренный 5,5-7,9 20-28 Ветер поднимает пыль, бумажки. Качаются тонкие ветви деревьев и без листвы. Дым перемешивается в воздухе, теряя форму. Это лучший ветер для работы обычного ветрогенератора (при диаметре ветроколеса 3-6 м) 4.Умеренное волнение
Волны удлинённые, белые барашки видны во многих местах. Высота волн 1-1,5 м, длина - 15 м.
Достаточная ветровая тяга для виндсёрфинга (на доске под парусом), с возможностью выйти в режим глиссирования (при ветре не менее 6-7 м/с)
5 Свежий 8,0-10,7 29-38 Качаются ветки и тонкие стволы деревьев, ветер чувствуется рукой. Вытягивает большие флаги. Свистит в ушах. 4.Неспокойное море
Хорошо развитые в длину, но не очень крупные волны, повсюду видны белые барашки (в отдельных случаях образуются брызги). Высота волн 1,5-2 м, длина - 30 м
6 Сильный 10,8-13,8 39-49 Качаются толстые сучья деревьев, тонкие деревья гнутся, гудят телеграфные провода, зонтики используются с трудом 5.Крупное волнение
Начинают образовываться крупные волны. Белые пенистые гребни занимают значительные площади. Образуется водяная пыль. Высота волн - 2-3 м, длина - 50 м
7 Крепкий 13,9-17,1 50-61 Качаются стволы деревьев, гнутся большие ветки, трудно идти против ветра. 6.Сильное волнение
Волны громоздятся, гребни срываются, пена ложится полосами по ветру. Высота волн до 3-5 м, длина - 70 м
8 Очень
крепкий
17,2-20,7 62-74 Ломаются тонкие и сухие сучья деревьев, говорить на ветру нельзя, идти против ветра очень трудно. 7. Очень сильное волнение
Умеренно высокие, длинные волны. По краям гребней начинают взлетать брызги. Полосы пены ложатся рядами по направлению ветра. Высота волн 5-7 м, длина - 100 м
9 Шторм 20,8-24,4 75-88 Гнутся большие деревья, ломает большие ветки. Ветер срывает черепицу с крыш 8.Очень сильное волнение
Высокие волны. Пена широкими плотными полосами ложится по ветру. Гребни волн начинают опрокидываться и рассыпаться в брызги, которые ухудшают видимость. Высота волн - 7-8 м, длина - 150 м
10 Сильный
шторм
24,5-28,4 89-102 На суше бывает редко. Значительные разрушения строений, ветер валит деревья и вырывает их с корнем 8.Очень сильное волнение
Очень высокие волны с длинными загибающимися вниз гребнями. Образующаяся пена выдувается ветром большими хлопьями в виде густых белых полос. Поверхность моря белая от пены. Сильный грохот волн подобен ударам. Видимость плохая. Высота - 8-11 м, длина - 200 м
11 Жестокий
шторм
28,5-32,6 103-117 Наблюдается очень редко. Сопровождается большими разрушениями на значительных пространствах. 9. Исключительно высокие волны.
Суда небольшого и среднего размера временами скрываются из вида. Море всё покрыто длинными белыми хлопьями пены, располагающимися по ветру. Края волн повсюду сдуваются в пену. Видимость плохая. Высота - 11м, длина 250м
12 Ураган >32,6 Более 117 Опустошительные разрушения. Отдельные порывы ветра достигают скорости 50-60 м.сек. Ураган может случиться перед сильной грозой 9. Исключительное волнение
Воздух наполнен пеной и брызгами. Море всё покрыто полосами пены. Очень плохая видимость. Высота волн >11м, длина - 300м.

Чтобы легче запомнить (составил: автор сайта сайт)

3 - Слабый - 5 м/с (~20 км/час) - листья и тонкие ветки деревьев непрерывно колышутся
5 - Свежий - 10 м/с (~35 км/час) - вытягивает большие флаги, свистит в ушах
7 - Крепкий - 15 м/с (~55 км/час) - гудят телеграфные провода, трудно идти против ветра
9 - Шторм - 25 м/с (90 км/час) - ветер валит деревья, разрушает строения

* Длина ветровой волны на поверхности водных объектов (реки, моря и т.д.) - наименьшее расстояние, по горизонтали, между вершинами соседних гребней.


Словарь:

Бриз – слабый береговой ветер, имеющий силу до 4 баллов.

Нормальный ветер - приемлемый, оптимальный для чего-либо. Например, для спортивного виндсёрфинга - нужна достаточная ветровая тяга (не менее 6-7 метров в секунду), а при парашютных прыжках, наоборот, лучше - безветренная погода (исключающая боковой снос, сильные порывы у земной поверхности и протаскивание купола после приземления).

Бурей называется длительный и штормовой до ураганного ветер, силой больше 9 баллов (градация по шкале Бофорта), сопровождающийся разрушениями на суше и сильным волнением на море (штормом). Бури бывают: 1) шквальные; 2) пыльные (песчаные); 3) беспыльные; 4) снежные. Шквальные бури начинаются внезапно и так же быстро оканчиваются. Их действия характеризуются огромной разрушительной силой (такой ветер разрушает строения и вырывает деревья с корнем). Эти бури возможны повсеместно на европейской части России, как на море, так и на суше. В России северная граница распространения пыльных бурь проходит через Саратов, Самару, Уфу, Оренбург и пригорья Алтая. Снежные бури большой силы бывают на равнинах европейской части и в степной части Сибири. Обычно бури обусловлены прохождением активного атмосферного фронта, глубокого циклона или смерча.

Шквал - сильный и резкий порыв ветра (Peak gusts) скоростью от 12 м/сек и выше, сопровождающийся, обычно, грозовым ливнем. При скорости больше 18-20 метров в секунду, шквальный ветер сносит плохо закреплённые конструкции, вывески и может ломать рекламные щиты и ветки деревьев, вызывать обрыв линий электропередач, что создаёт опасность для находящихся под ними рядом людей, автомобилей. Порывистый, шквалистый ветер возникает во время прохода атмосферного фронта и при быстром изменении давления в барической системе.

Вихрь атмосферное образование с вращательным движением воздуха вокруг вертикальной или наклонной оси.

Ураган (тайфун) – ветер разрушительной силы и значительной продолжительности, скорость которого превышает 120 км/ч. "Живет", т. е. двигается, ураган обычно 9–12 суток. Синоптики присваивают ему имя. Ураган разрушает здания, вырывает с корнем деревья, сносит легкие строения, обрывает провода, повреждает мосты и дороги. По разрушительной силе его можно сравнить с землетрясением. Родина ураганов – океанские просторы, ближе к экватору. Насыщенные водяными парами циклоны отсюда уходят на запад, все более закручиваясь и увеличивая скорость. Диаметры этих гигантских вихрей – несколько сотен километров. Наиболее активны ураганы в августе и сентябре.
В России ураганы чаще всего бывают в Приморском и Хабаровском краях, на Сахалине, Камчатке, Чукотке, Курильских островах.

Смерчи – это вертикальные вихри; шквалы – чаще горизонтальные, входящие в структуру циклонов.

Слово "смерч" – русское, и происходит от смыслового понятия "сумрак", то есть мрачная, грозовая обстановка. Смерч представляет собой гигантскую вращающуюся воронку, внутри которой пониженное давление, и в эту воронку засасываются любые предметы, оказавшиеся на пути движения смерча. При его приближении слышен оглушительный гул. Двигается над землей смерч со средней скоростью 50–60 км/ч. Смерчи недолговечны. Одни из них "живут" секунды или минуты, и лишь немногие - до получаса.

На Североамериканском континенте смерч называют торнадо , а в Европе – тромб . Торнадо может поднять в воздух автомобиль, вырвать с корнем деревья, покорежить мост, разрушить верхние этажи зданий.

В Книгу рекордов Гиннесса как самый страшный и разрушительный за всю историю наблюдений вошел смерч в Бангладеш, наблюдавшийся в 1989 г. Несмотря на то что жители города Шатурии были заранее предупреждены о приближении смерча, его жертвами стали 1300 человек.

В России смерчи бывают чаще в летние месяцы на Урале, Черноморском побережье, в Поволжье и Сибири.

Синоптики относят ураганы, бури и смерчи к чрезвычайным событиями с умеренной скоростью распространения, поэтому чаще всего удаётся вовремя объявить штормовое предупреждение. Оно может быть передано по каналам гражданской обороны: после звука сирен "Внимание всем! " надо слушать сообщение местного телевидения и радио.


Условные обозначения на метеокартах погодных явлений, связанных с ветром

В метеорологии и в гидрометеорологии - направление ветра ("откуда дует"), обозначается на карте в виде стрелочки, вид оперения у которой показывает среднюю скорость потока воздуха. В аэронавигации - наименование направления отличается на противоположное. В навигации на воде, единица скорости (узел) судна - принимается равной одной морской миле в час (десять узлов соответствуют, примерно, пяти метрам в секунду).

На метеокарте, длинное перо ветровой стрелки - означает 5 м/с, короткое - 2,5м/с, в форме треугольного флажка - 25 м/с (следует после комбинации из четырёх длинных чёрточек и 1 короткой). В примере, изображенном на рисунке - ветер силой 7-8 м/с. При неустойчивом направлении ветра - в конце стрелочки ставится крест.

На картинке показаны условные обозначения направления и скорости ветра, применяемые на картах погоды, а так же пример нанесения значков и фрагменты из стоклеточной матрицы метеосимволов (например, позёмок и низовая метель, когда происходит подъём и перераспределение в приземном слое воздуха ранее выпавшего снега).

Данные символы можно видеть на синоптической карте Гидрометцентра России (http://meteoinfo.ru) составленной в результате анализа текущих данных по территории Европы и Азии, где схематически показаны границы зон тёплых и холодных атмосферных фронтов и направления их перемещений вдоль земной поверхности.

Что делать, если поступило штормовое предупреждение?

1. Плотно закройте и укрепите все двери и окна. На стекла наклейте крест-накрест полоски пластыря (чтобы не разлетались осколки).

2. Подготовьте запас воды и пищи, медикаментов, фонарик, свечи, керосиновую лампу, приемник на батарейках, документы и деньги.

3. Отключите газ и электричество.

4. Уберите с балконов (со дворов) предметы, которые могут быть унесены ветром.

5. Из легких зданий перейдите в более прочные или убежища гражданской обороны.

6. В деревенском доме переберитесь в наиболее просторную и прочную его часть, а лучше всего – в подвал.

8. Если у вас есть машина, постарайтесь отъехать как можно дальше от эпицентра урагана.

Дети из детских садов и школ должны быть заранее отправлены по домам. Если штормовое предупреждение поступило слишком поздно, дети должны быть размещены в подвалах или центральной части зданий.

Лучше всего переждать ураган, смерч или бурю в убежище, заранее подготовленном укрытии или, хотя бы, в подвале. Однако, часто, штормовое предупреждение даётся всего за несколько минут до прихода стихии, и за это время не всегда удаётся добраться до укрытия.

Если вы оказались на улице во время урагана

2. Нельзя находиться на мостах, путепроводах, эстакадах, в местах хранения легковоспламеняющихся и ядовитых веществ.

3. Спрячьтесь под мостом, железобетонным навесом, в подвале, погребе. Можно лечь в яму или любое углубление. Глаза, рот и нос защитите от песка и земли.

4. Нельзя залезать на крышу и прятаться на чердаке.

5. Если вы едете на машине по равнине, остановитесь, но не покидайте автомобиль. Плотнее закройте его двери и окна. Во время снежной бури укройте чем-нибудь двигатель со стороны радиатора. Если ветер несильный, можно время от времени разгребать снег с автомобиля, чтобы не оказаться погребенным под толстым слоем снега.

6. Если вы в городском транспорте, немедленно покиньте его и ищите убежище.

7. Если стихия застигла вас на возвышенном или открытом месте, бегите (ползите) в сторону какого-либо укрытия (к скалам, лесу), которое могло бы погасить силу ветра, но берегитесь падающих веток и деревьев.

8. Когда ветер стих, не выходите сразу из укрытия, так как через несколько минут шквал может повториться.

9. Сохраняйте спокойствие и не паникуйте, помогайте пострадавшим.

Как вести себя после стихийных бедствий

1. Выходя из укрытия, осмотритесь – нет ли нависающих предметов и частей конструкций, оборванных проводов.

2. Не зажигайте газ и огонь, не включайте электричество до тех пор, пока специальные службы не проверят состояние коммуникаций.

3. Не пользуйтесь лифтом.

4. Не заходите в поврежденные строения, не подходите к оборванным электропроводам.

5. Взрослое население оказывает помощь спасателям.

Приборы

Точная скорость ветра определяется с помощью прибора - анемометра. Если такого прибора нет, можно изготовить самодельную ветромерную "доску Вильда" (рис. 1), с достаточной точностью измерений для скорости ветра до десяти метров в секунду.

Рис. 1. Самодельная ветромерная доска-флюгер Вильда:
1 - вертикальная трубка (длиной 600 мм) с заваренным заостренным верхним концом, 2 - передний горизонтальный стержень флюгера с шариком-грузом противовеса; 3 - крыльчатка флюгера; 4 - верхняя рамка; 5 - горизонтальная ось шарнира доски; 6 - ветромерная доска (весом 200 г). 7 - нижний неподвижный вертикальный стержень с укрепленными на нем указателями сторон света, по восьми румбам: С - север, Ю - юг, 3 - запад, В - восток, СЗ - северозапад, СВ - северовосток, ЮВ - юговосток, ЮЗ - югозапад; № 1 - № 8 - штифты-указатели скорости ветра.

Флюгер устанавливается на высоте 6 - 12 метров, над открытой ровной поверхностью. Под флюгером неподвижно укреплены стрелки-указатели направления ветра. Над флюгером к трубке 1 на горизонтальной оси 5 шарнирно прикреплена к рамке 4 ветромерная доска 6 размером 300х150 мм. Вес доски - 200 грамм (настраивается по эталонному прибору). От рамки 4 отходит назад, прикрепленный к ней отрезок дуги (радиусом 160 мм) с восемью штифтами, из которых четыре - длинные (по 140 мм) и четыре - короткие (по 100 мм). Углы, под которыми они закреплены, составляют с вертикалью для штифта №1-0°; №2 - 4°; №3 - 15,5°; №4 - 31°; №5 - 45,5°; №6 - 58°; №7 - 72°; №8-80,5°.
Скорость ветра узнают путем отсчёта угла отклонения доски. Определив положение ветромерной доски между штифтами дуги, обращаются к табл. 1, где этому положению соответствует определённая скорость ветра.
Положение доски между штифтами даёт лишь приблизительное представление о скорости ветра, тем более что сила ветра быстро и часто меняется. Доска никогда не остается долго в каком-нибудь одном положении, а постоянно колеблется в некоторых пределах. Наблюдая в течение 1 минуты за меняющимся наклоном этой доски, определяют её средний наклон (расчёт усреднением максимальных значений) и только после этого судят о средней минутной скорости ветра. Для большой скорости ветра, превышающей 12-15 м/сек, показания этого прибора имеют малую точность (в данном ограничении - главный недостаток рассмотренной схемы)....


Приложение

Средняя скорость ветра по шкале Бофорта в разные годы ее применения

таблица 2

Балл Словесная
характеристика
Средняя скорость ветра (м/с) по рекомендациям
Симпсона Кеппена Международного метеорологического комитета
1906 1913 1939 1946 1963
0 Штиль 0 0 0 0 0
1 Тихий ветер 0,8 0,7 1,2 0,8 0,9
2 Легкий ветер 2,4 3,1 2,6 2,5 2,4
3 Слабый ветер 4,3 4,8 4,3 4,4 4,4
4 Умеренный ветер 6,7 6,7 6,3 6,7 6,7
5 Свежий ветер 9,4 8,8 8,7 9,4 9,3
6 Сильный ветер 12,3 10,8 11,3 12,3 12,3
7 Крепкий ветер 15,5 12,7 13,9 15,5 15,5
8 Очень крепкий ветер 18,9 15,4 16,8 18,9 18,9
9 Шторм 22,6 18,0 19,9 22,6 22,6
10 Сильный шторм 26,4 21,0 23,4 26,4 26,4
11 Жестокий шторм 30,0 27,1 30,6 30,5
12 Ураган 29,0 33,0 32,7
13 39,0
14 44,0
15 49,0
16 54,0
17 59,0

Шкала ураганов была разработана Гербертом Саффиром и Робертом Симпсоном, в начале 1920-х годов, для измерения потенциального ущерба от урагана. Она основывается на числовых значениях максимальной скорости ветра и включает оценку штормовых волн в каждой из пяти категорий. В азиатских странах, данное природное явление называется тайфуном (в переводе с китайского языка - «великий ветер»), а в Северной и Южной Америке - именуется ураганом. При количественной оценке скорости ветрового потока, применяются следующие сокращения: км/ч / mph - километров / миль в час, м/с - метров в секунду.

таблица 3

Категория Максимальная скорость ветра Штормовые волны, м Действие на наземные предметы Действие на прибрежную зону
1 Минимальный 119-153 км/ч
74-95 mph
33-42 м/с
12-15 Повреждены деревья и кустарники Небольшие повреждения пирсов, некоторые небольшие суда на стоянке сорваны с якорей
2 Умеренный 154-177 км/ч
96-110 mph
43-49 м/с
18-23 Значительные повреждения деревьев и кустарников; некоторые деревья повалены, сильно повреждены сборные домики Значительные повреждения пирсов и пристаней для яхт, небольшие суда на стоянке сорваны с якорей
3 Значительный 178-209 км/ч
111-129 mph
49-58 м/с
27-36 Повалены большие деревья, сборные домики разрушены, у отдельных небольших зданий повреждены окна, двери и крыши Сильные наводнения вдоль береговой линии; небольшие здания на берегу разрушены
4 Огромный 210-249 км/ч
130-156 mph
58-69 м/с
39-55 Деревья, кустарники и рекламные щиты повалены, сборные домики разрушены до основания, сильно повреждены окна, двери и крыши Затоплены участки, находящиеся на высоте до 3 метров над уровнем моря; наводнения распространяются на 10 км вглубь суши; ущерб от волн и переносимых ими обломков
5 Катастрофа >250 км/ч
>157 mph
> 69 м/с
Более 55 Все деревья, кустарники и рекламные щиты повалены, многие здания серьезно повреждены; некоторые здания разрушены полностью; сборные домики снесены Сильный ущерб причинен нижним этажам зданий на высоте до 4,6 метров над уровнем моря в зоне, простирающейся на 457 метров вглубь суши. Необходимы массовые эвакуации населения с прибрежных территорий

Шкала торнадо

Шкала торнадо (шкала Фудзита-Пирсона) разработана Теодором Фудзита для классификации торнадо по степени причиненного ветром ущерба. Торнадо характерно, в основном, для Северной Америки.

таблица 4

Категория Скорость, км/ч Ущерб
F0 64-116 Разрушает дымовые трубы, повреждает кроны деревьев
F1 117-180 Срывает сборные (щитовые) домики с фундамента или перевертывает их
F2 181-253 Значительные разрушения. Сборные домики разрушаются, деревья вырываются с корнем
F3 254-332 Разрушает крыши и стены, разбрасывает легковые автомобили, переворачивает грузовики
F4 333-419 Разрушает укреплённые стены
F5 420-512 Поднимает дома и переносит их на значительное расстояние

Словарь терминов :

Подветренная сторона объекта (защищена от ветра самим объектом; область повышенного давления, из-за сильного торможения потока) обращена туда, куда дует ветер. На рисунке - справа. Например, на воде, мелкие суда подходят к более крупным кораблям с их подветренной стороны (там они защищены корпусом большого судна от волн и ветра). "Коптящие" заводы-предприятия должны располагаться, по отношению к жилым городским застройкам - с подветренной стороны (по направлению господствующих ветров) и отделяться от этих районов достаточно широкими санитарно-защитными зонами.


Наветренная сторона объекта (холма, морского судна) - на той стороне, откуда дует ветер. На наветренной стороне хребтов - возникают восходящие движения воздушных масс, а на подветренной - происходит нисходящий воздухопад. Наибольшая часть осадков (в виде дождя и снега), обусловленных барьерным эффектом гор, выпадает на их наветренной стороне, а с подветренной стороны - начинается обвал более холодного и сухого воздуха.

В метеорологии, при указании направления ветра, используется деление окружности на шестнадцать частей, по 16-ти лучевой розе румбов (через 22.5 градуса). Например, северо-северо-восток обозначается как ССВ (первая буква - основное направление, к которому ближе румб). Четыре основных направления: Север, Восток, Юг, Запад.

Приблизительный расчёт динамического ветрового давления на квадратный метр рекламного щита (перпендикулярно плоскости конструкции), установленного у дороги проезжей части. В примере, ожидаемая в данном месте, максимальная штормовая скорость ветра, принимается равной 25 метров в секунду.

Вычисления проводятся по формуле:
P = 1/2 * (плотность воздуха) * V^2 = 1/2 * 1.2 кг/м3 * 25^2 м/с = 375 Н/м2 ~ 38 килограмм на квадратный метр (кгс)

Заметьте, что давление растёт пропорционально квадрату скорости. Учитывайте и закладывайте в строительный проект достаточный запас прочности , устойчивости (зависит и от высоты стойки опоры) и стойкости к сильным порывам ветра и атмосферным осадкам, в виде снега и дождя.

При какой силе ветра отменяют полёты самолётов гражданской авиации

Причиной нарушения расписания полётов, задержки или отмены авиарейсов - может стать штормовое предупреждение от синоптиков, по аэродромам вылета и назначения.

Метеорологический минимум, необходимый для благополучного (штатного) взлёта и посадки воздушного судна, это допустимые пределы изменений комплекса параметров: скорости и направления ветра, прямой видимости, состояния взлётно-посадочной полосы аэродрома и высоты нижней границы облачности. Непогода, в виде интенсивных атмосферных осадков (дождь, туман, снег и метель), с обширными фронтальными грозами - так же может стать причиной отмены авиарейсов из воздушной гавани.

Величины метеоминимумов - могут различаться для конкретных самолётов (по их типам и моделям) и аэропортов (по классу и наличию достаточного наземного оборудования, в зависимости от особенностей окружающего аэродром рельефа местности и имеющихся высоких гор), а так же обусловлены квалификацией и лётным стажем пилотов экипажа, командира корабля. В расчёт и к исполнению - принимается худший минимум.

Запрет на вылет - возможен при нелётной погоде на аэродроме назначения, если там нет, поблизости, двух запасных аэрогаваней с приемлемыми метеоусловиями.

При сильном ветре, самолёты выполняют взлёт и посадку - против воздушного потока (выруливая, для этого, на соответствующую полосу). В таком случае обеспечивается не только безопасность, но и значительно сокращается дистанция разбега на взлёте и пробега при посадке. Ограничения по боковой и попутной составляющей скорости ветра, для большинства современных гражданских самолетов, составляют величины, примерно: 17-18 и 5 м/с., соответственно. Опасность большого крена, сноса и разворота авиалайнера, при его взлёте и посадке - представляет неожиданный и сильный порывистый ветер (шквал).


https://www.meteorf.ru - Росгидромет (Федеральная служба по гидрометеорологии и мониторингу окружающей среды). Гидрометеорологический научно-исследовательский центр РФ.

Www.meteoinfo.ru - новый сайт Гидрометеоцентра РФ.

Http://193.7.160.230/web/losev/osad.gif - Смотреть видео-анимацию с прогнозной синоптической метеокартой - осадки, динамика циклонов и антициклонов на ближайшие дни, с показом горизонтальных перемещений изобар (изолиний атмосферного давления) расчётной погодной модели.

Http://ada.ru/Guns/ballistic/wind/index.htm - Охотникам о влиянии ветра на полёт пули, баллистический калькулятор.

Справочник ru.wikipedia.org/wiki/Климат_Москвы - столичные метеостанции и статистические данные о среднемесячных значениях основных погодных параметров (температура, скорость ветра, облачность, осадки в виде дождя и снега), дни, когда были отмечены абсолютные температурные рекорды, а так же самые холодные и тёплые годы в Москве и области.

Https://meteocenter.net/weather/ - Погода России от Метеоцентра.

Https://www.ecomos.ru/kadr22/postyMeteoMoskwaOblast.asp - Метеорологическая сеть (станции и посты) на территории Московской обл. и в соседних регионах (Владимирской, Ивановской, Калужской, Костромской, Рязанской, Смоленской, Тверской, Тульской и Ярославской областях)

Https://www.ecomos.ru/kadr22/sostojanieZagrOSnedelia.asp - экологические сводки о состоянии загрязнения окружающей среды в Москве (метеостанции ВДНХ, Балчуг и Тушино) и области, за прошедший недельный период.