Что является органическим веществом в химии. Классы органических соединений

Органические вещества, в отличие от неорганических, образуют ткани и органы живых организмов. К ним относятся белки, жиры, углеводы, нукленовые кислоты и другие.

Состав органических веществ клетки растений

Данные вещества представляют собой химические соединения, в состав которых входит углерод. Редкие исключения из этого правила – карбиды, угольная кислота, цианиды, оксиды углерода, карбонаты. Органические соединения образуются при связи углерода с любым из элементов таблицы Менделеева. Чаще всего в составе этих веществ присутствуют кислород, фосфор, азот, водород.

Каждая клетка любого из растений на нашей планете состоит из органических веществ, которые условно можно разделить на четыре класса. Это углеводы, жиры (липиды), белки (протеины), нуклеиновые кислоты. Данные соединения являются биологическими полимерами. Они принимают участие в метаболических процессах в организме как растений, так и животных на клеточном уровне.

Четыре класса органических веществ

1. – это соединения, основными структурными элементами которых являются аминокислоты. В организме растений белки выполняют различные важные функции, основная из которых – структурная. Они входят в состав разнообразных клеточных образований, регулируют процессы жизнедеятельности и откладываются про запас.

2. также входят в состав абсолютно всех живых клеток. Они состоят из простейших биологических молекул. Это сложные эфиры карбоновых кислот и спиртов. Главная роль жиров в жизнедеятельности клеток – энергетическая. Жиры откладываются в семенах и других частях растений. Вследствие их расщепления высвобождается необходимая для жизни организма энергия. Зимой многие кустарники и деревья питаются, расходуя запасы жиров и масел, которые они накопили за лето. Также следует отметить важную роль липидов в построении мембран клеток - как растительных, так и животных.

3. Углеводы являются основной группой органических веществ, благодаря расщеплению которых организмы получают необходимую энергию для жизни. Их название говорит само за себя. В структуре молекул углеводов наряду с углеродом присутствуют кислород и водород. Самым распространенным запасным углеводом, который образуется в клетках в процессе фотосинтеза, является крахмал. Большое количество этого вещества откладывается, например, в клетках клубней картофеля либо семян злаков. Другие углеводы придают сладкий привкус плодам растений.

Органические вещества, органические соединения - класс соединений, в состав которых входит углерод (за исключением карбидов, угольной кислоты, карбонатов, оксидов углерода и цианидов). Органические соединения обычно построены из цепочек атомов углерода, связанных между собой ковалентными связями, и различных заместителей, присоединенных к этим углеродным атомам

Органическая химия- это наука, изучающая состав, строение, физические и химические свойства органических веществ.

Органическими называют вещества, молекулы которых состоят из атомов углерода, водорода, кислорода, азота, серы и некоторых других элементов и содержат в своем составе С-С и С-Н связи. Причем наличие последних обязательно.
Органические вещества были известны человечеству с глубокой древности. Как самостоятельная наука, органическая химия возникла лишь в начале XIX века. В 1827г. шведский ученый Й.Я.Берцелиус опубликовал первое руководство по органическим веществам. Он был приверженцем модной в то время теории витализма, утверждавшей, что органические вещества образуются лишь в живых организмах под влиянием особой "жизненной силы".
Однако не все ученые-химики придерживались виталистических взглядов. Так еще в 1782г. К.В.Шееле, нагревая смесь аммиака, углекислого газа и угля, получил синильную кислоту, весьма распространенную в мире растений. В 1824-28гг. Ф.Велер путем химического синтеза получил щавелевую кислоту и мочевину.
Особое значение для окончательного развенчания теории витализма имели проведенные к началу 60-х годов синтезы различных органических веществ. В 1842г. Н.И.Зинин получил анилин, в 1845г. А.Кольбе - уксусную кислоту, в 1854г. М.Бертло разработал метод получения синтетического жира, а в 1861г. А.М.Бутлеров синтезировал сахаристое вещество.

С крахом теории витализма была стерта грань, отделяющая органические вещества от неорганических. И все же, для органических веществ характерен ряд специфических особенностей. К таковым в первую очередь следует отнести их многочисленность. В настоящее время человечеству известно более 10 млн. веществ, из них около 70% относятся к органическим.

Основными причинами многочисленности органических веществ считаются явления гомологии и изомерии.
Гомология - это явление существования ряда веществ, имеющих одинаковый качественный состав, сходное строение, а по количественному составу различающиеся на одну или несколько групп CH2, называемыхгомологической разностью.

Изомерия - это явление существования ряда веществ, имеющих одинаковый качественный и количественный состав, но различное строение молекул, проявляющих различные физические свойства и химическую активность.

Молекулы органических веществ состоят в основном из атомов неметаллов, связанных слабополярными ковалентными связями. Поэтому в зависимости от числа атомов углерода в молекуле они представляют собой газообразные, жидкие или низкоплавкие твердые вещества. Кроме того, молекулы органических веществ обычно содержат атомы углерода и водорода в неокисленной или малоокисленной форме, поэтому они легко окисляются с выделением большого количества теплоты, что приводит к воспламенению.

Органические вещества товаров - это соединения, в состав которых входят атомы углерода и водорода. Они подразделяются на мономеры, олигомеры и полимеры.

Мономеры - органические вещества, состоящие из одного соединения и не подвергающиеся расщеплению с образованием новых органических веществ. Распад мономеров происходит в основном до углекислого газа и воды.

Моносахариды - мономеры, относящиеся к классу углеводов, в состав молекулы которых входят углерод, водород и кислород (СН2О)n. Наибольшее распространение из них имеют гексозы (С6Н12О6) - глюкоза и фруктоза. Они встречаются в основном в пищевых продуктах растительного происхождения (плодах и овощах, вкусовых напитках и кондитерских изделиях). Промышленностью выпускается также чистая глюкоза и фруктоза как продукт питания и сырье для производства кондитерских изделий и напитков для диабетиков. Из натуральных продуктов больше всего глюкозы и фруктозы (до 60 %) содержит мед.

Моносахариды придают продуктам сладкий вкус, обладают энергетической ценностью (1 г - 4 ккал) и влияют на гигроскопичность содержащих их продуктов. Растворы глюкозы и фруктозы хорошо сбраживаются дрожжами и используются другими микроорганизмами, поэтому при содержании до 20 % и повышенном содержании воды ухудшают сохраняемость.

Органические кислоты - соединения, в составе молекулы которых находится одна или несколько карбоксильных групп (-СООН).

В зависимости от числа карбоксильных групп органические кислоты подразделяются на моно-, ди- и трикарбоновые кислоты. Другими классификационными признаками этих кислот служит число атомов углерода (от С2 до С40), а также амино- и фенольных групп.

Природные органические кислоты содержатся в свежих плодах и овощах, продуктах их переработки, вкусовых товарах, а также в кисломолочных продуктах, сырах, кисломолочном сливочном масле.

Органические кислоты - соединения, придающие продуктам кислый вкус. Поэтому они используются в виде пищевых добавок в качестве подкислителей (уксусная, лимонная, молочная и другие кислоты) для сахаристых кондитерских изделий, алкогольных и безалкогольных напитков, соусов.

Наибольшее распространение в пищевых продуктах имеют молочная, уксусная, лимонная, яблочная и винная кислоты. Отдельные виды кислот (лимонная, бензойная, сорбиновая) обладают бактерицидными свойствами, поэтому их используют в качестве консервантов. Органические кислоты пищевых продуктов относятся к дополнительным энергетическим веществам, так как при их биологическом окислении выделяется энергия.

Жирные кислоты - карбоновые кислоты алифатического ряда, имеющие не менее шести атомов углерода в молекуле (С6-С22 и выше). Они подразделяются на высшие (ВЖК) и низкомолекулярные (НЖК).

Важнейшие природные насыщенные ВЖК - стеариновая и пальмитиновая, а ненасыщенные - олеиновая, арахидоновая, линолевая и линоленовая. Из них последние две относятся к полиненасыщенным незаменимым жирным кислотам, обусловливающим биологическую эффективность пищевых продуктов. Природные ВЖК могут содержаться в виде жиров во всех жи-росодержащих продуктах, однако в свободном виде они встречаются в небольшом количестве, так же как и НЖК.

Аминокислоты - карбоновые кислоты, содержащие одну или несколько аминогрупп (NH2).

Аминокислоты в товарах могут находиться в свободном виде и в составе белков. Всего известно около 100 аминокислот, из них почти 80 встречаются только в свободном виде. Глютаминовая кислота и ее натриевая соль широко применяются в качестве пищевой добавки в составе приправ, соусов, пищевых концентратов на мясной и рыбной основах, так как усиливают вкус мяса и рыбы.

Витамины - низкомолекулярные органические соединения, являющиеся регуляторами или участниками процессов обмена веществ в организме человека.

Витамины могут самостоятельно участвовать в обмене веществ (например, витамины С, Р, А и т.п.) или входить в состав ферментов, катализирующих биохимические процессы (витамины В1, В2, В3, В6 и др.).

Кроме указанных общих свойств, каждый витамин имеет специфические функции и свойства. Эти свойства рассматриваются в рамках дисциплины «Физиология питания».

В зависимости от растворимости витамины подразделяются следующим образом:

  • на водорастворимые (В1, В2, В3, РР, В6, В9, В12, С и др.);
  • жирорастворимые (А, Д, Е, К).

К группе витаминов относят также витаминоподобные вещества, часть из которых называют витаминами (каротин, холин, витамин U и др.).

Спирты - органические соединения, содержащие в молекулах одну или несколько гидроксильных групп (ОН) у насыщенных атомов углерода. По количеству этих групп различают одно-, двух- (гликоли), трех- (глицерин) и многоатомные спирты. Этиловый спирт получают в качестве готовой продукции в спиртовой промышленности, а также в виноделии, ликеро-во-дочной, пивоваренной промышленности, при производстве вин, водок, коньяка, рома, виски, пива. Кроме того, этиловый спирт в небольших количествах образуется при производстве кефира, кумыса и кваса.

Олигомеры - органические вещества, состоящие из 2-10 остатков молекул однородных и разнородных веществ.

В зависимости от состава олигомеры подразделяются на однокомпонентные, двух-, трех- и многокомпонентные. К одно-компонентным олигомерам относятся некоторые олигосахариды (мальтоза, трегалоза), к двухкомпонентным - сахароза, лактоза, жиры-моноглицериды, в состав которых входят остатки молекул глицерина и только одной жирной кислоты, а также гликозиды, сложные эфиры; к трехкомпонентным - рафиноза, жиры-диглицериды; к многокомпонентным - жиры-триглице-риды, липоиды: фосфатиды, воски и стероиды.

Олигосахариды - углеводы, в состав которых входят 2-10 остатков молекул моносахаридов, связанных гликозидными связями. Различают ди-, три- и тетрасахариды. Наибольшее распространение в пищевых продуктах имеют дисахариды - сахароза и лактоза, в меньшей мере - мальтоза и трегалоза, а также трисахариды - рафиноза. Указанные олигосахариды содержатся только в пищевых продуктах.

Сахароза (свекловичный, или тростниковый сахар) - дисахарид, состоящий из остатков молекул глюкозы и фруктозы. При кислотном или ферментативном гидролизе сахароза распадается на глюкозу и фруктозу, смесь которых в соотношении 1:1 называют инвертным сахаром. В результате гидролиза усиливается сладкий вкус продуктов (например, при созревании плодов и овощей), поскольку фруктоза и инвертный сахар обладают повышенной степенью сладости, чем сахароза. Так, если степень сладости сахарозы принять за 100 условных единиц, степень сладости фруктозы будет равна 220, а инвертного сахара - 130.

Сахароза является преобладающим сахаром следующих пищевых продуктов: сахара-песка, сахара-рафинада (99,7-99,9 %), сахаристых кондитерских изделий (50-96 %), некоторых плодов и овощей (бананы - до 18 %, дыни - до 12 %, лук - до 10-12 %) и т.д. Кроме того, сахароза может содержаться в небольших количествах и в других пищевых продуктах растительного происхождения (зерномучных товарах, во многих алкогольных и безалкогольных напитках, слабоалкогольных коктейлях, мучных кондитерских изделиях), а также сладких молочных товарах - мороженом, йогуртах и т.п. Сахароза отсутствует в пищевых продуктах животного происхождения.

Лактоза (молочный сахар) - дисахарид, состоящий из остатков молекул глюкозы и галактозы. При кислотном или ферментативном гидролизе лактоза распадается до глюкозы и галактозы, которые и используются живыми организмами: человеком, дрожжами или молочнокислыми бактериями.

Лактоза по степени сладости значительно уступает сахарозе и глюкозе, которая входит в ее состав. Уступает она им и по распространенности, так как содержится в основном в молоке разных видов животных (3,1-7,0 %) и отдельных продуктах его переработки. Однако при использовании молочнокислого и/или спиртового брожений в процессе производства (например, кисломолочных продуктов) и/или сычужного фермента (при производстве сыров) лактоза полностью сбраживается.

Мальтоза (солодовый сахар) - дисахарид, состоящий из двух остатков молекул глюкозы. Это вещество встречается как продукт неполного гидролиза крахмала в солоде, пиве, хлебе и мучных кондитерских изделиях, приготовленных с использованием проросшего зерна. Она содержится только в небольших количествах.

Трегалоза (грибной сахар) - дисахарид, состоящий из двух остатков молекул глюкозы. Этот сахар мало распространен в природе и содержится в основном в пищевых продуктах одной группы - свежих и сушеных грибах, а также в натуральных консервах из них и дрожжах. В квашеных (соленых) грибах трегалоза отсутствует, поскольку расходуется при брожении.

Рафиноза - трисахарид, состоящий из остатков молекул глюкозы, фруктозы и галактозы. Как и трегалоза, рафиноза - мало распространенное вещество, встречающееся в небольших количествах в зерномучных товарах и свекле.

Свойства. Все олигосахариды являются запасными питательными веществами растительных организмов. Они хорошо растворимы в воде, легко подвергаются гидролизу до моносахаридов, обладают сладким вкусом, но степень их сладости различна. Исключение составляет лишь рафиноза - несладкая на вкус.

Олигосахариды гигроскопичны, при высоких температурах (160-200 °С) происходит их карамелизация с образованием темноокрашенных веществ (карамелинов и др.). В насыщенных растворах олигосахариды могут образовывать кристаллы, которые в ряде случаев ухудшают консистенцию и внешний вид продуктов, вызывая образование дефектов (например, засахаривание меда или варенья; образование кристаллов лактозы в сгущенном молоке с сахаром).

Липиды и липоиды - олигомеры, в состав которых входят остатки молекул трехатомного спирта глицерина или других высокомолекулярных спиртов, жирных кислот, а иногда и других веществ.

Липиды - это олигомеры, являющиеся сложными эфирами глицерина и жирных кислот - глицеридами. Смесь природных липидов, в основном триглицеридов, принято называть жирами. В товарах содержатся именно жиры.

В зависимости от количества остатков молекул жирных кислот в глицеридах различают моно-, ди- и триглицериды, а в зависимости от преобладания предельных или непредельных кислот жиры бывают жидкие и твердые. Жидкие жиры бывают чаще всего растительного происхождения (например, растительные масла: подсолнечное, оливковое, соевое и т.п.), хотя есть и твердые растительные жиры (какао-масло, кокосовое, пальмоядровое). Твердые жиры - это в основном жиры животного или искусственного происхождения (говяжий, бараний жир; коровье масло, маргарин, кулинарные жиры). Однако среди животных жиров есть и жидкие (рыбий, китовый и т.п.).

В зависимости от количественного содержания жиров все потребительские товары можно подразделить на следующие группы.

1. Товары с супервысоким содержанием жиров (90,0-99,9 %). К ним относятся растительные масла, животные и кулинарные жиры, коровье топленое масло.

2. Товары с преимущественным содержанием жиров (60-89,9 %) представлены сливочным маслом, маргарином, шпиком свинины, орехами: грецкими, кедровыми, фундуком, миндалем, кешью и т.п.

3. Товары с высоким содержанием жиров (10-59 %). В эту группу входят концентрированные молочные продукты: сыры, мороженое, молочные консервы, сметана, творог, сливки с повышенной жирностью, майонез; жирные и средней жирности мясо, рыба и продукты их переработки, икра рыб; яйцо; необезжиренная соя и продукты ее переработки; торты, пирожные, сдобное печенье, орехи, арахис, шоколадные изделия, халва, кремы на жировой основе и др.

4. Товары с низким содержанием жиров (1,5-9,9 %) - бобовые крупы, закусочные и обеденные консервы, молоко, сливки, кроме высокожирных, кисломолочные напитки, отдельные виды нежирной рыбы (например, семейства тресковых) или мяса II категории упитанности и субпродуктов (кости, головы, ножки и т.п.).

5. Товары с очень низким содержанием жиров (0,1-1,4 %) - большинство зерномучных и плодоовощных товаров.

6. Товары, не содержащие жиров (0 %), - слабоалкогольные и безалкогольные напитки, сахаристые кондитерские изделия, кроме карамели и конфет с молочными и ореховыми начинками, ириса; сахар; мед.

Общие свойства. Жиры являются запасными питательными веществами, обладают самой высокой энергетической ценностью среди других питательных веществ (1 г - 9 ккал), а также биологической эффективностью, если содержат полиненасыщенные незаменимые жирные кислоты. Жиры имеют относительную плотность меньше 1, поэтому легче воды. Они нерастворимы в воде, но растворимы в органических растворителях (бензине, хлороформе и др.). С водой жиры в присутствии эмульгаторов образуют пищевые эмульсии (маргарин, майонез).

Жиры подвергаются гидролизу при действии фермента липазы или омылению под действием щелочей. В первом случае образуется смесь жирных кислот и глицерина; во втором - мыла (солей жирных кислот) и глицерина. Ферментативный гидролиз жиров может происходить и при хранении товаров. Количество образующихся свободных жирных кислот характеризуется кислотным числом.

Усвояемость жиров во многом зависит от интенсивности липаз, а также температуры плавления. Жидкие жиры с низкой температурой плавления усваиваются лучше, чем твердые с высокой температурой плавления. Высокая интенсивность усвоения жиров при наличии большого количества этих или других энергетических веществ (например, углеводов) приводит к отложению их избытка в виде жира-депо и ожирению.

Жиры, содержащие непредельные (ненасыщенные) жирные кислоты, способны к окислению с последующим образованием перекисей и гидроперекисей, которые оказывают вредное воздействие на организм человека. Товары с прогоркшими жирами утрачивают безопасность и подлежат уничтожению или промпереработке. Прогоркание жиров служит одним из критериев окончания срока годности или хранения жиросодержащих товаров (овсяной крупы, пшеничной муки, печенья, сыров и др.). Способность жиров к прогорканию характеризуется йодным и перекисным числами.

Жидкие жиры с высоким содержанием непредельных жирных кислот могут вступать в реакцию гидрогенизации - насыщения таких кислот водородом, при этом жиры приобретают твердую консистенцию и выполняют функцию заменителей некоторых твердых животных жиров. Данная реакция положена в основу производства маргарина и маргариновой продукции.

Липоиды - жироподобные вещества, в состав молекул которых входят остатки глицерина или других высокомолекулярных спиртов, жирных и фосфорной кислот, азотистых и других веществ.

К липоидам относятся фосфатиды, стероиды и воски. От липидов они отличаются наличием фосфорной кислоты, азотистых оснований и других веществ, отсутствующих в липидах. Это более сложные вещества, чем жиры. Большинство их объединяет наличие в составе жирных кислот. Второй компонент - спирт - может иметь разную химическую природу: в жирах и фосфатидах - глицерин, в стероидах - высокомолекулярные циклические спирты-стерины, в восках - высшие жирные спирты.

Наиболее близки по химической природе к жирам фосфатиды (фосфолипиды) - сложные эфиры глицерина жирных и фосфорной кислот и азотистых оснований. В зависимости от химической природы азотистого основания выделяют следующие разновидности фосфатидов: лецитин (новое название - фосфатидилхолин), в составе которого содержится холин; а также кефалин, содержащий этаноламин. Наибольшее распространение в природных продуктах и применение в пищевой промышленности имеет лецитин. Лецитином богаты желтки яиц, субпродукты (мозги, печень, сердце), молочный жир, бобовые крупы, особенно соя.

Свойства. Фосфолипиды обладают эмульгирующими свойствами, благодаря чему лецитин используется в качестве эмульгатора при производстве маргарина, майонеза, шоколада, мороженого.

Стероиды и воски являются сложными эфирами высокомолекулярных спиртов и высокомолекулярных жирных кислот (С16-С36). Они отличаются от других липоидов и липидов отсутствием в их молекулах глицерина, а друг от друга - спиртами: стероиды содержат остатки молекул стеринов - циклических спиртов, а воски - одноатомные спирты с 12-46 атомами С в молекуле. Основной стерин растений - β-ситостерин, животных - холестерин, микроорганизмов - эргостерин. Ситостерином богаты растительные масла, холестерином - коровье масло, яйцо, субпродукты.

Свойства. Стероиды нерастворимы в воде, не омыляются щелочами, имеют высокую температуру плавления, обладают эмульгирующими свойствами. Холестерин и эргостерин под воздействием ультрафиолетовых лучей могут превращаться в витамин D.

Гликозиды - олигомеры, в которых остаток молекул моносахаридов или олигосахаридов связан с остатком неуглеводного вещества - аглюкона через гликозидную связь.

Гликозиды содержатся только в пищевых продуктах, в основном растительного происхождения. Особенно их много в плодах, овощах и продуктах их переработки. Гликозиды этих продуктов представлены амигдалином (в ядрах косточковых плодов, миндаля, особенно горького), соланином и чаконином (в картофеле, томатах, баклажанах); гесперидином и нарингином (в цитрусовых), синигрином (в хрене, редьке), рутином (во многих плодах, а также гречневой крупе). В небольших количествах гликозиды содержатся и в продуктах животного происхождения.

Свойства. гликозиды растворимы в воде и спирте, многие из них обладают горьким и/или жгучим вкусом, специфичным ароматом (например, амигдалин имеет горькоминдальный аромат), бактерицидными и лечебными свойствами (например, синигрин, сердечные гликозиды и др.).

Эфиры - олигомеры, в молекуле которых остатки молекул входящих в них веществ объединены простыми или сложными эфирными связями.

В зависимости от этих связей различают простые и сложные эфиры.

  • Простые эфиры входят в состав товаров бытовой химии (растворители) и парфюмерно-косметических изделий. В продовольственных товарах отсутствуют, но могут применяться как вспомогательное сырье в пищевой промышленности.
  • Сложные эфиры - соединения, состоящие из остатков молекул карбоновых кислот и спиртов.

Сложные эфиры низших карбоновых кислот и простейших спиртов обладают приятным фруктовым запахом, поэтому их иногда называют фруктовыми эфирами.

Сложные (фруктовые) эфиры совместно с терпенами и их производными, ароматическими спиртами (эвгенолом, линало-олом, анетолом и др.) и альдегидами (коричным, ванильным и т.п.) входят в состав эфирных масел, которые обусловливают аромат многих пищевых продуктов (фруктов, ягод, вин, ликероналивочных, кондитерских изделий). Сложные эфиры, их композиции и эфирные масла являются самостоятельным товаром - пищевыми добавками, например ароматизаторами.

Свойства. Сложные эфиры легко летучи, нерастворимы в воде, но растворимы в этиловом спирте и растительных маслах. Эти свойства используются для извлечения их из пряно-ароматического сырья. Сложные эфиры гидролизуются под действием кислот и щелочей с образованием входящих в их состав карбоновых кислот или их солей и спиртов, а также вступают в реакции конденсации с образованием полимеров и переэтирификации с получением новых эфиров за счет замены одного спиртового или кислотного остатка.

Полимеры - высокомолекулярные вещества, состоящие из десятков и более остатков молекул однородных или разнородных мономеров, соединенных химическими связями.

Они характеризуются молекулярной массой от нескольких тысяч до нескольких миллионов кислородных единиц и состоят из мономерных звеньев. Мономерное звено (ранее называемое элементарное) - составное звено, которое образуется из одной молекулы мономера при полимеризации. Например, в крахмале - С6Н10О5. С увеличением молекулярной массы и количества звеньев возрастает прочность полимеров.

По происхождению полимеры делят на природные, или биополимеры (например, белки, полисахариды, полифенолы и т.п.), и синтетические (например, полиэтилен, полистирол, фенолоальдегидные смолы). В зависимости от расположения в макромолекуле атомов и атомных групп различают линейные полимеры с открытой линейной цепью (например, натуральный каучук, целлюлоза, амилоза), разветвленные полимеры, имеющие линейную цепь с ответвлениями (например, амилопектин), глобулярные полимеры, отличающиеся преобладанием сил внутримолекулярного взаимодействия между группами атомов, входящих в молекулу, над силами межмолекулярного взаимодействия (например, белки мышечной ткани мяса, рыбы и т.п.), и сетчатые полимеры с трехмерными сетками, образованными отрезками высокомолекулярных соединений цепного строения (например, отверженные фенолоальдегидные смолы). Существуют и другие структуры макромолекул полимеров (лестничные и т.п.), но они встречаются редко.

По химическому составу макромолекулы различают гомополимеры и сополимеры. Гомополимеры - высокомолекулярные соединения, состоящие из одноименного мономера (например, крахмал, целлюлоза, инулин и др.). Сополимеры - соединения, образованные из нескольких различных мономеров (двух и более). Примером могут служить белки, ферменты, полифенолы.

Биополимеры - природные высокомолекулярные соединения, образующиеся в процессе жизнедеятельности растительных или животных клеток.

В биологических организмах биополимеры выполняют четыре важнейшие функции:

1) рациональное запасание питательных веществ, которые организм расходует при нехватке или отсутствии поступления их извне;

2) формирование и поддержание в жизнеспособном состоянии тканей и систем организмов;

3) обеспечение необходимого обмена веществ;

4) защита от внешних неблагоприятных условий.

Перечисленные функции биополимеры продолжают выполнять частично или полностью и в товарах, сырьем для которых служат определенные биоорганизмы. При этом преобладание тех или иных функций биополимеров зависит от того, какие потребности удовлетворяют конкретные товары. Например, пищевые продукты выполняют в первую очередь энергетические и пластические потребности, а также потребность во внутренней безопасности, поэтому в их составе преобладают запасные усвояемые (крахмал, гликоген, белки и т.п.) и неусвояемые (целлюлоза, пектиновые вещества) или трудноусвояемые биополимеры (некоторые белки), характеризующиеся высокой механической прочностью и защитными свойствами. В плодоовощных товарах присутствуют биополимеры, обладающие бактерицидным действием, что обеспечивает дополнительную защиту от неблагоприятных внешних воздействий, в первую очередь микробиологического характера.

Биополимеры продовольственных товаров представлены усвояемыми и неусвояемыми полисахаридами, пектиновыми веществами, усвояемыми и трудно- или неусвояемыми белками, а также полифенолами.

В продовольственных товарах растительного происхождения преобладающими биополимерами являются полисахариды и пектиновые вещества, а в товарах животного происхождения - белки. Известны товары растительного происхождения, состоящие почти целиком из полисахаридов с небольшим количеством примесей (крахмал и крахмалопродукты). В товарах животного происхождения полисахариды практически отсутствуют (исключение - мясо и печень животных, которые содержат гликоген), однако товары, которые состоят только из белка, также отсутствуют.

Полисахариды - это биополимеры, содержащие кислород и состоящие из большого числа мономерных звеньев типа С5Н8О4 или С6Н10О5.

По усвояемости организмом человека полисахариды подразделяются на усвояемые (крахмал, гликоген, инулин) и неусвояемые (целлюлоза и др.).

Полисахариды образуются преимущественно растительными организмами, поэтому являются количественно преобладающими веществами продовольственных товаров растительного происхождения (70-100 % сухого вещества). Исключение составляет лишь гликоген, так называемый животный крахмал, образующийся в печени животных. Разные классы и группы товаров отличаются подгруппами преобладающих полисахаридов. Так, в зерномучных товарах (кроме сои), мучных кондитерских изделиях, картофеле и орехах преобладает крахмал. В плодоовощных товарах (кроме картофеля и орехов), сахаристых кондитерских изделиях крахмал либо отсутствует, либо содержится в небольших количествах. В этих товарах основными углеводами являются моно- и олигосахариды.

Крахмал - биополимер, состоящий из мономерных звеньев - глюкозидных остатков.

Природный крахмал представлен двумя полимерами: амилозой с линейной цепью и амилопектином - с разветвленной, причем последний преобладает (76-84 %). В растительных клетках крахмал формируется в виде крахмальных зерен. Их размер, форма, а также соотношение амилозы и амилопектина являются идентифицирующими признаками природного крахмала определенных видов (картофельного, кукурузного и др.). Крахмал - запасное вещество растительных организмов.

Свойства. Амилоза и амилопектин различаются не только строением, но и свойствами. Амилопектин с большой молекулярной массой (100 000 и более) нерастворим в воде, а амилоза растворима в горячей воде и образует слабовязкие растворы. Образование и вязкость крахмального клейстера обусловлены в значительной мере за счет амилопектина. Амилоза легче, чем амилопектин, подвергается гидролизу до глюкозы. В процессе хранения происходит старение крахмала, вследствие чего снижается его водоудерживающая способность.

  • Продукты с высоким содержанием крахмала (50-80 %), представленные зерномучными товарами - зерном, крупами, кроме бобовых; макаронными и сухарными изделиями, а также пищевой добавкой - крахмалом и модифицированным крахмалом.
  • Продукты со средним содержанием крахмала (10-49 %). К ним относятся картофель, бобовые крупы, кроме сои, в которой отсутствует крахмал, хлеб, мучные кондитерские изделия, орехи, незрелые бананы.
  • Продукты с низким содержанием крахмала (0,1-9 %): большинство свежих плодов и овощей, кроме перечисленных, и продукты их переработки, йогурты, мороженое, вареные колбасы и другие комбинированные продукты, при производстве которых используется крахмал как стабилизатор консистенции или загуститель.

В остальных продовольственных товарах крахмал отсутствует.

Гликоген - резервный полисахарид животных организмов. Он имеет разветвленную структуру и по строению близок к амилопектину. Наибольшее количество его содержится в печени животных (до 10 %). Кроме того, он находится в мышечной ткани, сердце, мозге, а также в дрожжах и грибах.

Свойства. Гликоген образует с водой коллоидные растворы, гидролизуется с образованием глюкозы, дает с йодом красно-бурое окрашивание.

Целлюлоза (клетчатка) - линейный природный полисахарид, состоящий из остатков молекул глюкозы.

Свойства. Целлюлоза является полициклическим полимером с большим числом полярных гидроксильных групп, что придает жесткость и прочность ее молекулярным цепям (а также повышает влагоемкость, гигроскопичность). Целлюлоза нерастворима в воде, не поддается действию слабых кислот и щелочей, а растворяется только в очень немногих растворителях (в медно-аммиачном растворителе и в концентрированных растворах четвертичных аммониевых оснований).

Пектиновые вещества - комплекс биополимеров, основная цепь которых состоит из остатков молекул галактуроновой кислоты.

Пектиновые вещества представлены протопектином, пектином и пектиновой кислотой, которые отличаются молекулярной массой, степенью полимеризации и наличием метальных групп. Общим их свойством является нерастворимость в воде.

Протопектин - полимер, основная цепь которого состоит из большого числа мономерных звеньев - остатков молекул пектина. Протопектин включает молекулы арабана и ксилана. Он входит в состав срединных пластинок, связывающих отдельные клетки в ткани, а также совместно с целлюлозой и гемицеллюлозами - в оболочки растительных тканей, обеспечивая их твердость и прочность.

Свойства. Протопектин подвергается кислотному и ферментативному гидролизу (например, при созревании плодов и овощей), а также деструкции при длительной варке в воде. В результате этого ткани размягчаются, что облегчает усвоение пищевых продуктов организмом человека.

Пектин - полимер, состоящий из остатков молекул метилового эфира и неметилированной галактуроновой кислоты. Пектины разных растений отличаются различной степенью полимеризации и метилирования. Это влияет на их свойства, в частности желирующую способность, благодаря которой пектин и содержащие его в достаточном количестве плоды используются в кондитерской промышленности при производстве мармелада, пастилы, джема и т.п. Желирующие свойства пектина возрастают с увеличением его молекулярной массы и степени метилирования.

Свойства . Пектин подвергается омылению под действием щелочей, а также ферментативному гидролизу с образованием пектиновых кислот и метилового спирта. Пектин нерастворим в воде, не усваивается организмом, но обладает высокой водоудерживающей и сорбционной способностью. Благодаря последнему свойству он выводит из организма человека многие вредные вещества: холестерин, соли тяжелых металлов, радионуклиды, бактериальные и грибные яды.

Пектиновые вещества содержатся только в нерафинированных пищевых продуктах растительного происхождения (зерномучных и плодоовощных товарах), а также в продуктах с добавкой пектина или растительного сырья, богатого им (фруктово-ягодные кондитерские изделия, сбивные конфеты, торты и т.п.).

Белки - природные биополимеры, состоящие из остатков молекул аминокислот, связанных амидными (пептидными) связями, а отдельные подгруппы содержат дополнительно неорганические и органические безазотистые соединения.

Следовательно, по химической природе белки могут быть органическими, или простыми, полимерами и элементоорганическими, или сложными, сополимерами.

Простые белки состоят только из остатков молекул аминокислот, а сложные белки кроме аминокислот могут содержать неорганические элементы (железо, фосфор, серу и др.), а также безазотистые соединения (липиды, углеводы, красящие вещества, нуклеиновые кислоты).

В зависимости от способности растворяться в различных растворителях простые белки подразделяют на следующие виды: альбумины, глобулины, проламины, глютелины, протамины, гистоны, протеноиды.

Сложные белки подразделяются в зависимости от безазотистых соединений, входящих в состав их макромолекул, на следующие подгруппы:

  • фосфоропротеиды - белки, содержащие остатки молекул фосфорной кислоты (казеин молока, вителлин яиц, ихтулин икры рыб). Эти белки нерастворимы, но набухают в воде;
  • гликопротеиды - белки, содержащие остатки молекул углеводов (муцины и мукоиды костей, хрящей, слюны, а также роговицы глаз, слизистой оболочки желудка, кишечника);
  • липопротеиды - белки с остатками молекул липидов (содержатся в мембранах, протоплазме растительной и животных клеток, плазме крови и т.п.);
  • хромопротеиды - белки с остатками молекул красящих соединений (миоглобин мышечной ткани и гемоглобин крови и др.);
  • нуклеопротеиды - белки с остатками нуклеиновых кислот (белки ядер клетки, зародышей семян злаковых, гречишных, бобовых и др.).

В состав белков может входить 20-22 аминокислоты в разном соотношении и последовательности. Эти аминокислоты делятся на незаменимые и заменимые.

Незаменимые аминокислоты - аминокислоты, не синтезируемые в организме человека, поэтому они должны поступать извне с пищей. К ним относятся изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан, валин, аргинин и гистидин.

Заменимые аминокислоты - синтезируемые в организме человека аминокислоты.

В зависимости от содержания и оптимального соотношения незаменимых аминокислот белки подразделяют на полноценные и неполноценные.

Полноценные белки - белки, в состав которых входят все незаменимые аминокислоты в оптимальном для организма человека соотношении. К ним относятся белки молока, яиц, мышечной ткани мяса и рыбы, гречневой круп и др.

Неполноценные белки - белки, в составе которых отсутствует или содержится в недостаточном количестве одна или несколько незаменимых аминокислот. К ним относятся белки костей, хрящей, кожи, соединительных тканей и т.п.

По усвояемости белки подразделяют на усвояемые (белки мышечных тканей, молока, яиц, круп, овощей и т.п.) и трудноусвояемые (эластин, коллаген, кератин и т.д.).

Макромолекулы белков имеют сложное строение. Различают четыре уровня организации белковых молекул: первичную, вторичную, третичную и четвертичную структуры. Первичной структурой называется последовательность аминокислотных остатков в полипептидной цепи, соединенных амидной связью. Вторичная структура относится к типу укладки полипептидных цепей, чаще всего в виде спирали, витки которой удерживаются водородными связями. Под третичной структурой понимают расположение полипептидной цепи в пространстве. У многих белков эта структура образуется из нескольких компактных глобул, называемых доменами и связанных тонкими перемычками - вытянутыми полипептидными цепями. Четвертичная структура отражает способ объединения и расположения в пространстве макромолекул, состоящих из нескольких не связанных ковалентными связями полипептидных цепей.

Между этими субъединицами возникают водородные, ионные и другие связи. Изменение рН, температуры, обработка солями, кислотами и тому подобное приводит к диссоциации макромолекулы на исходные субъединицы, но при устранении указанных факторов происходит самопроизвольная реконструкция четвертичной структуры. Более глубокие изменения структуры белков, включая и третичную, называются денатурацией.

Белки содержатся во многих пищевых продуктах: растительного происхождения - зерномучных, плодоовощных, мучных кондитерских товарах и животного происхождения - мясных, рыбных и молочных товарах. В ряде пищевых продуктов белки либо совсем отсутствуют, либо их содержание ничтожно мало и не имеет существенного значения в питании, хотя может влиять на выпадение осадка или помутнение (например, в соках).

Свойства. Физико-химические свойства белков определяются их высокомолекулярной природой, компактностью укладки полипептидных цепей и взаимным расположением аминокислот. Молекулярная масса белков варьирует от 5 тыс. до 1 млн.

В продовольственных товарах наибольшее значение имеют следующие свойства: энергетическая ценность, ферментативный и кислотный гидролиз, денатурация, набухание, меланоидинообразование.

Энергетическая ценность белков равна 4,0 ккал на 1 г. Однако для организма человека более важна биологическая ценность белков, определяемая содержанием незаменимых аминокислот.

Ферментативный и кислотный гидролиз белков происходит под воздействием протеолитических ферментов и соляной кислоты желудочного сока. Благодаря этому свойству усвояемые белки используются организмом человека, а образующиеся при гидролизе аминокислоты участвуют в синтезе белков организма человека. Гидролиз белков происходит при брожении теста, производстве спирта, вин и пива, квашеных овощей.

Денатурация белков происходит путем обратимых и глубоких необратимых изменений в структуре белка. Обратимая денатурация связана с изменениями в четвертичной структуре, а необратимая - во вторичной и третичной структурах. Денатурация происходит при действии высоких и низких температур, обезвоживании, изменении рН среды, повышенной концентрации сахаров, солей и других веществ, при этом улучшается усвояемость белков, но утрачивается способность к растворению в воде и других растворителях, а также к набуханию. Процесс денатурации белков является одним из наиболее значимых при производстве многих пищевых продуктов и кулинарных изделий (выпечке хлебобулочных и мучных кондитерских изделий, квашении овощей, молока, засолке рыбы и овощей, сушке, консервировании сахаром и кислотами).

Набухание, или гидратация, белков - их способность поглощать и удерживать связанную воду, увеличивая при этом объем. Это свойство положено в основу приготовления теста для хлебобулочных и мучных кондитерских изделий, при производстве колбасных изделий и др. Сохранение белков в набухшем состоянии является важной задачей многих содержащих их пищевых продуктов. Утрата белками водоудерживающей способности, называемой синерезисом, вызывает старение белков муки и круп, особенно бобовых, черствение хлебобулочных и мучных кондитерских изделий.

Меланоидинообразование - способность аминокислотных остатков белков взаимодействовать с редуцирующими сахарами с образованием темноокрашенных соединений - меланоидинов. Это свойство наиболее активно проявляется при повышенных температурах и рН от 3 до 7 при производстве хлебобулочных и мучных кондитерских изделий, пива, консервов, сушеных плодов и овощей. В результате изменяется цвет продуктов от желто-золотистого до коричневого разных оттенков и черного, при этом снижается и биологическая ценность продуктов.

Ферменты - биополимеры белковой природы, являющиеся катализаторами многих биохимических процессов.

Основная функция ферментов - ускорение превращений веществ, поступающих, или имеющихся, или образующихся при обмене веществ в любом биологическом организме (человек, животные, растения, микроорганизмы), а также регулирование биохимических процессов в зависимости от изменяющихся внешних условий.

В зависимости от химической природы макромолекул ферменты подразделяют на одно- и двухкомпонентные. Однокомпонентные состоят только из белка (например, амилаза, пепсин и др.), двухкомпонентные - из белка и небелковых соединений. На поверхности молекулы белка или в специальной щели находятся активные центры, представленные совокупностью функциональных групп аминокислот, непосредственно взаимодействующих с субстратом, и/или небелковые составляющие - коферменты. К последним относятся витамины (В1, В2, РР и др.), а также минеральные вещества (Сu, Zn, Fe и т.п.). Так, к железосодержащим ферментам относятся пероксидаза и каталаза, а к медьсодержащим - аскорбатоксидаза.

  • оксиредуктазы - ферменты, катализирующие окислительно-восстановительные реакции путем перенесения ионов водорода или электронов, например, дыхательные ферменты пероксидаза, каталаза;
  • трансферазы - ферменты, катализирующие перенос функциональных групп (СН3, СООН, NH2 и т.п.) от одной молекулы к другой, например, ферменты, катализирующие дезаминирование и декарбоксилирование аминокислот, образующихся при гидролизе белков сырья (зерна, плодов, картофеля), что приводит к накоплению высших спиртов при производстве этилового спирта, вин и пива;
  • гидролазы - ферменты, катализирующие гидролитическое расщепление связей (пептидной, гликозидной, эфирной и др.). К ним относятся липазы, гидролизирующие жиры, пептидазы - белки, амилазы и фосфорилазы - крахмал и др.;
  • лиазы - ферменты, катализирующие негидролитическое отщепление групп от субстрата с образованием двойной связи и обратные реакции. Например, пируватдекарбоксилаза отщепляет от пировиноградной кислоты СО2, что приводит к образованию ацетоальдегида как промежуточного продукта спиртового и молочнокислого брожений;
  • изомеразы - ферменты, катализирующие образование изомеров субстрата путем перемещения кратных связей или групп атомов внутри молекулы;
  • лигазы - ферменты, катализирующие присоединение двух молекул с образованием новых связей.

Значение ферментов. В неочищенном виде ферменты с древнейших времен используются при производстве многих продовольственных товаров (в хлебопечении, спиртовой промышленности, виноделии, сыроделии и т.д.). Потребительские свойства ряда товаров в значительной мере формируются в процессе особой операции - ферментации (черный, красный, желтый чай, какао-бобы и др.). Очищенные ферментативные препараты начали применять в XX в. при производстве соков, чистых аминокислот для лечения и искусственного питания, удаления лактозы из молока для продуктов детского питания и т.д. При хранении пищевых продуктов ферменты способствуют созреванию мяса, плодов и овощей, но могут вызвать и их порчу (гниение, плесневение, ослизнение, брожение).

Свойства. Ферменты обладают высокой каталитической активностью, благодаря чему небольшое количество их может активизировать биохимические процессы огромных количеств субстрата; специфичностью действия, т.е. определенные ферменты действуют на конкретные вещества; обратимостью действия (одни и те же ферменты могут осуществлять распад и синтез определенных веществ); мобильностью, проявляющейся в изменении активности под воздействием различных факторов (температуры, влажности, рН среды, активаторов и инактиваторов).

Для каждого из указанных свойств характерны определенные оптимальные диапазоны (например, в диапазоне температур 40-50 °С отмечается наибольшая активность ферментов). Любые отклонения от оптимального диапазона вызывают снижение активности ферментов, а иногда и их полную инактивацию (например, высокие температуры стерилизации). На этом основаны многие методы консервирования продовольственного сырья. При этом происходит частичная или полная инактивация собственных ферментов сырья и продукции, а также микроорганизмов, вызывающих их порчу.

Для инактивации ферментов продовольственного сырья и товаров при хранении применяют разнообразные физические, физико-химические, химические, биохимические и комбинированные методы.

Полифенолы - биополимеры, в состав макромолекул которых могут входить фенольные кислоты, спирты и их эфиры, а также сахара и другие соединения.

Эти вещества встречаются в живой природе только в клетках растений. Кроме того, они могут содержаться в древесине и изделиях из нее, торфе, буром и каменном угле, нефтяных остатках.

Наибольшее значение полифенолы имеют в свежих плодах, овощах и продуктах их переработки, включая вина, ликероналивочные изделия, а также в чае, кофе, коньяке, роме и пиве. В указанных продуктах полифенолы влияют на органолептические свойства (вкус, цвет), физиологическую ценность (многие из этих веществ обладают Р-витаминной активностью, бактерицидными свойствами) и сохраняемость.

К полифенолам, содержащимся в товарах растительного происхождения, относятся дубильные (например, катехины), а также красящие вещества (флавоноиды, антоцианы, меланины и др.).

Самая простая классификация заключается в том. что все известные вещества делят на неорганические и органические . К органическим веществам относят углеводороды и их производные. Все остальные вещества - неорганические.

Неорганические вещества по составу делят на простые и сложные .

Простые вещества состоят из атомов одного химического элемента и подразделяются на металлы, неметаллы, благородные газы. Сложные вещества состоят из атомов разных элементов, химически связанных друг с другом.

Сложные неорганические вещества по составу и свойствам распределяют по следующим важнейшим классам: оксиды, основания, кислоты, амфотерные гидроксиды, соли.

  • Оксиды - это сложные вещества, состоящие из двух химических элементов, один из которых - кислород со степенью окисления (-2). Общая формула оксидов: Э m О n , где m - число атомов элемента Э, а n - число атомов кислорода. Оксиды, в свою очередь, классифицируют на солеобразующие и несолеобрадующие. Солеобразующие делятся на основные, амфотерные, кислотные, которым соответствуют основания, амфотерные гидроксиды, кислоты соответственно.
  • Основные оксиды - это оксиды металлов в степенях окисления +1 и +2. К ним относятся:
    • оксиды металлов главной подгруппы первой группы (щелочные металлы ) Li - Fr
    • оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы ) Mg - Ra
    • оксиды переходных металлов в низших степенях окисления
  • Кислотные оксиды -образуют неметаллы со С.О. более +2 и металлы со С.О. от +5 до +7 (SO 2 , SeO 2 , Р 2 O 5 , As 2 O 3 , СO 2 , SiO 2 , CrO 3 и Mn 2 O 7). Исключение: у оксидов NO 2 и ClO 2 нет соответствующих кислотных гидроксидов, но их считают кислотными.
  • Амфотерные оксиды -образованы амфотерными металлами со С.О. +2, +3,+4 (BeO, Cr 2 O 3 , ZnO, Al 2 O 3 , GeO 2 , SnO 2 и РЬО).
  • Несолеобразующие оксиды - оксиды неметаллов со С.О.+1, +2 (СО, NO, N 2 O, SiO).
  • Основания - это сложные вещества, состоящие из атомов металла и одной или нескольких гидроксогрупп (-ОН). Общая формула оснований: М(ОН) у, где у - число гидроксогрупп, равное степени окислении металла М (как правило, +1 и +2). Основания делятся на растворимые (щелочи) и нерастворимые.
  • Кислоты -(кислотные гидроксиды)- это сложные вещества, состоящие из атомов водорода, способных замещаться на атомы металла, и кислотных остатков. Общая формула кислот: Н х Ас, где Ас - кислотный остаток (от английского «acid» - кислота), х - число атомов водорода, равное заряду иона кислотного остатка.
  • Амфотерные гидроксиды - это сложные вещества, которые проявляют и свойства кислот, и свойства оснований. Поэтому формулы амфотерных гидроксидов можно записывать и в форме кислот, и в форме оснований.
  • Соли - это сложные вещества, состоящие из катионов металла и анионов кислотных остатков. Такое определение относится к средним солям.
  • Средние соли - это продукты полного замещения атомов водорода в молекуле кислоты атомами металла или полного замещения гидроксогрупп в молекуле основания кислотными остатками.
  • Кислые соли - атомы водорода в кислоте замещены атомами металла частично. Они получаются при нейтрализации основания избытком кислоты. Чтобы правильно назвать кислую соль, необходимо к названию нормальной соли прибавить приставку гидро- или дигидро- в зависимости от числа атомов водорода, входящих в состав кислой соли.Например, KHCO 3 – гидрокарбонат калия, КH 2 PO 4 – дигидроортофосфат калия. Нужно помнить, что кислые соли могут образовывать только двух и более основные кислоты.
  • Осно́вные соли - гидроксогруппы основания (OH −) частично замещены кислотными остатками. Чтобы назвать основную соль, необходимо к названию нормальной соли прибавить приставку гидроксо- или дигидроксо- в зависимости от числа ОН – групп, входящих в состав соли.Например, (CuOH) 2 CO 3 – гидроксокарбонат меди (II).Нужно помнить, что основные соли способны образовывать лишь основания, содержащие в своём составе две и более гидроксогрупп.
  • Двойные соли - в их составе присутствует два различных катиона, получаются кристаллизацией из смешанного раствора солей с разными катионами, но одинаковыми анионами. Например, KAl(SO 4) 2 , KNaSO 4.
  • Смешанные соли - в их составе присутствует два различных аниона. Например, Ca(OCl)Cl.
  • Гидратные соли (кристаллогидраты ) - в их состав входят молекулы кристаллизационной воды. Пример: Na 2 SO 4 ·10H 2 O.

Классификация органических веществ

Соединения, состоящие только из атомов водорода и углерода, называют углеводородами . Прежде чем начать данный раздел, запомни, для упрощения записи, химики не расписывают в цепочках углероды и водороды, однако не забывай что углерод образует четыре связи, и если на рисунке углерод связан двумя связями, то еще двумя он связан с водородами, хоть последнее и не указано:

В зависимости от строения углеродной цепи органические соединения разделяют на соединения с открытой цепью - ациклические (алифатические) и циклические - с замкнутой цепью атомов.

Циклические делятся на две группы: карбоциклические соединения и гетероциклические .

Карбоциклическне соединения , в свою очередь, включают два ряда соединений: алициклические и ароматические .

Ароматические соединения в основе строения молекул имеют плоские углеродсодержащие циклы с особой замкнутой системой π-электронов. образующих общую π-систему (единое π-электронное облако).

Как ациклические (алифатические), так и циклические углеводороды могут содержать кратные (двойные или тройные) связи. Такие углеводороды называют непредельными (ненасыщенными), в отличие от предельных (насыщенных), содержащих только одинарные связи.

Пи-связь (π-связь) - ковалентная связь, образующаяся перекрыванием p-атомных орбиталей. В отличие от сигма-связи, осуществляемой перекрыванием s-атомных орбиталей вдоль линии соединения атомов, пи-связи возникают при перекрывании p-атомных орбиталей по обе стороны от линии соединения атомов.

В случае образования ароматической системы, например, бензола C6H6, каждый из шести атомов углерода находится в состоянии sp2 - гибридизации и образует три сигма-связи с валентными углами 120 °. Четвёртый p-электрон каждого атома углерода ориентируется перпендикулярно к плоскости бензольного кольца. В целом возникает единая связь, распространяющаяся на все атомы углерода бензольного кольца. Образуются две области пи-связей большой электронной плотности по обе стороны от плоскости сигма-связей. При такой связи все атомы углерода в молекуле бензола становятся равноценными и, следовательно, подобная система более устойчива, чем система с тремя локализованными двойными связями.

Предельные алифатические углеводороды называют алканами, они имеют общую формулу С n Н 2n + 2 , где n - число атомов углерода. Старое их название часто употребляется и в настоящее время - парафины:

Непредельные алифатические углеводороды с одной тройной связью называют алкинами. Их общая формула С n Н 2n — 2

Предельные алициклические углеводороды - циклоалканы, их общая формула С n Н 2n:

Мы рассмотрели классификацию углеводородов. Но если в этих молекулах один или большее число атомов водорода заменить на другие атомы или группы атомов (галогены, гидроксильные группы, аминогруппы и др.), образуются производные углеводородов: галогенопроизводные, кислородсодержащие, азотсодержащие и другие органические соединения.

Атомы или группы атомов, которые определяют самые характерные свойства данного класса веществ, называются функциональными группами.

Углеводороды в их производные с одной и той же функциональной группой образуют гомологические ряды.

Гомологическим рядом называют ряд соединений, принадлежащих к одному классу (гомологов), по отличающихся друг от друга по составу на целое число групп -СН 2 - (гомологическую разность), имеющих сходное строение и, следовательно, сходные химические свойства.

Сходство химических свойств гомологов значительно упрощает изучение органических соединений.

Замещенные углеводороды

  • Галогенопроизводные углеводородов можно рассматривать как продукты замещения в углеводородах одного или нескольких атомов водорода атомами галогенов. В соответствии с этим могут существовать предельные и непредельные моно-, ли-, три- (в общем случае поли-) галогенопроизводные.Общая формула галогенопроизводных предельных углеводородов R-Г.К кислородсодержащим органическим веществам относят спирты, фенолы, альдегиды, кетоны, карбоновые кислоты, простые и сложные эфиры.
  • Спирты - производные углеводородов, в которых один или несколько атомов водорода замещены на гидроксильные группы.Спирты называют одноатомными, если они имеют одну гидроксильную группу, и предельными, если они - производные алканов.Общая формула предельных одноатомных спиртов: R-ОН.
  • Фенолы - производные ароматических углеводородов (ряда бензола), в котором один или несколько атомов водорода в бензольном кольце замещены на гидроксильные группы.
  • Альдегиды и кетоны - производные углеводородов, содержащие карбонильную группу атомов (карбонил).В молекулах альдегидов одна связь карбонила идет на соединение с атомом водорода, другая - с углеводородным радикалом.В случае кетонов карбонильная группа связана с двумя (в общем случае разными) радикалами.
  • Простые эфиры представляют собой органические вещества, содержащие два углеводородных радикала, соединенные атомом кислорода: R=О-R или R-О-R 2 .Радикалы могут быть одинаковыми или разными. Состав простых эфиров выражается формулой С n Н 2n +2O.
  • Сложные эфиры - соединения, образованные замещением атома водорода карбоксильной группы в карбоновых кислотах на углеводородный радикал.
  • Нитросоединения - производные углеводородов, в которых один или несколько атомов водорода замещены на нитрогруппу -NO 2 .
  • Амины - соединения, которые рассматривают как производные аммиака, в котором атомы водорода замещены на углеводородные радикалы.В зависимости от природы радикала амины могут быть алифатическими. В зависимости от числа замещенных на радикалы атомов водорода различают первичные амины, вторичные, третичные. В частном случае у вторичных, а также третичных аминов радикалы могут быть и одинаковыми. Первичные амины можно также рассматривать как производные углеводородов (алканов), в которых один атом водорода замещен на аминогруппу. Аминокислоты содержат две функциональные группы, соединенные с углеводородным радикалом, - аминогруппу -NH 2 и карбоксил -СOОН.

Известны и другие важные органические соединения, которые имеют несколько разных или одинаковых функциональных групп, длинные линейные цепи, связанные с бензольными кольцами. В таких случаях строгое определение принадлежности вещества к какому-то определенному классу невозможно. Эти соединения часто выделяют в специфические группы веществ: углеводы, белки, нуклеиновые кислоты, антибиотики, алкалоиды и др. В настоящее время известно также много соединений, которые можно отнести и к органическим, и к неорганическим. Их называют элементоорганическими соединениями. Некоторые из них можно рассматривать как производные углеводородов.

Номенклатура

Для названия органических соединений используют 2 номенклатуры – рациональную и систематическую (ИЮПАК) и тривиальные названия .


Составление названий по номенклатуре ИЮПАК:

1) Основу названия соединения составляет корень слова, обозначающий предельный углеводород с тем же числом атомов, что и главная цепь.

2) К корню добавляют суффикс, характеризующий степень насыщенности:

Ан (предельный, нет кратных связей);

Ен (при наличии двойной связи);

Ин (при наличии тройной связи).


Если кратных связей несколько, то в суффиксе указывается число таких связей (-диен, -триен и т.д.), а после суффикса обязательно указывается цифрами положение кратной связи, например:

СН 3 –СН 2 –СН=СН 2 СН 3 –СН=СН–СН 3

бутен-1 бутен-2

СН 2 =СН–СН=СН 2

Такие группы как нитро-, галогены, углеводородные радикалы, не входящие в главную цепь выносятся в приставку. При этом они перечисляются по алфавиту. Положение заместителя указывается цифрой перед приставкой.

Порядок составления названия следующий:

1. Найти самую длинную цепь атомов С.

2. Последовательно пронумеровать атомы углерода главной цепи, начиная с ближайшего к разветвлению конца.

3. Название алкана складывается из названий боковых радикалов, перечисленных в алфавитном порядке с указанием положения в главной цепи, и названия главной цепи.


Порядок составления названия

Химический язык, в состав которого в качестве одной из наиболее специфических частей входит химическая символика (включающая и химические формулы), является важным активным средством познания химии и требует поэтому четкого и осознанного применения.

Химические формулы — это условные изображения состава и строения химически индивидуальных веществ посредством химических символов, индексов и других знаков. При изучении состава, химического, электронного и пространственного строения веществ, их физических и химических свойств, изомерии и других явлений применяют химические формулы разных видов.

Особенно много видов формул (простейшие, молекулярные, структурные, проекционные, конформационные и др.) применяют при изучении веществ молекулярного строения — большинства органических веществ и сравнительно небольшой части неорганических веществ при обычных условиях. Значительно меньше видов формул (простейшие) применяют при изучении немолекулярных соединений, строение которых более наглядно отражают шаростержневые модели и схемы кристаллических структур или их элементарных ячеек.


Составление полных и кратких структурных формул углеводородов

Пример:

Составить полную и краткую структурные формулы пропана С 3 Н 8 .

Решение:

1. Записать в строчку 3 атома углерода, соединить их связями:

С–С–С

2. Добавить черточки (связи) так, чтобы от каждого атома углерода отходило 4 связи:

4. Записать краткую структурную формулу:

СН 3 –СН 2 –СН 3

Таблица растворимости

Органических соединений много, но среди них имеются соединения с общими и сходными свойствами. Поэтому все они по общим признакам классифицированы, объединены в отдельные классы и группы. В основе классификации лежат углеводороды соединения, которые состоят только из атомов углерода и водорода. Остальные органические вещества относятся к «Другим классам органических соединений».

Углеводороды делятся на два больших класса: ациклические и циклические соединения.

Ациклические соединения (жирные или алифатические) соединения, молекулы которых содержат открытую (незамкнутую в кольцо) неразветвленную или разветвленную углеродную цепь с простыми или кратными связями. Ациклические соединения подразделяются на две основные группы:

насыщенные (предельные) углеводороды (алканы), у которых все атомы углерода связаны между собой только простыми связями;

ненасыщенные (непредельные) углеводороды, у которых между атомами углерода кроме одинарных простых связей, имеются также и двойные, и тройные связи.

Ненасыщенные (непредельные) углеводороды делятся на три группы: алкены, алкины и алкадиены.

Алкены (олефины, этиленовые углеводороды) ациклические непредельные углеводороды, которые содержат одну двойную связь между атомами углерода, образуют гомологический ряд с общей формулой C n H 2n . Названия алкенов образуются от названий соответствующих алканов с заменой суффикса «-ан» на суффикс «-ен». Например, пропен, бутен, изобутилен или метилпропен.

Алкины (ацетиленовые углеводороды) углеводороды, которые содержат тройную связь между атомами углерода, образуют гомологический ряд с общей формулой C n H 2n-2 . Названия алкенов образуются от названий соответствующих алканов с заменой суффикса «-ан» на суффикс «-ин». Например, этин (ацителен), бутин, пептин.

Алкадиены органические соединения, которые содержат две двойные связи углерод-углерод. В зависимости от того, как располагаются двойные связи относительно друг друга диены делятся на три группы: сопряженные диены, аллены и диены с изолированными двойными связями. Обычно к диенам относят ациклические и циклические 1,3-диены, образующие с общими формулами C n H 2n-2 и C n H 2n-4 . Ациклические диены являются структурными изомерами алкинов.

Циклические соединения в свою очередь делятся на две большие группы:

  1. карбоциклические соединения соединения, циклы которых состоят только из атомов углерода; Карбоциклические соединения подразделяются на алициклические насыщенные (циклопарафины) и ароматические;
  2. гетероциклические соединения соединения, циклы которых состоят не только из атомов углерода, но атомов других элементов: азота, кислорода, серы и др.

В молекулах как ациклических, так и циклических соединений атомы водорода можно замещать на другие атомы или группы атомов, таким образом, с помощью введения функциональных групп можно получать производные углеводородов. Это свойство ещё больше расширяет возможности получения различных органических соединений и объясняет их многообразие.

Наличие тех или иных групп в молекулах органических соединений обуславливает общность их свойств. На этом основана классификация производных углеводородов.

К «Другим классам органических соединений» относятся следующие:

Спирты получаются замещением одного или нескольких атомов водорода гидроксильными группами OH. Это соединение с общей формулой R (OH) х, где х число гидроксильных групп.

Альдегиды содержат альдегидную группу (С = О), которая всегда находится в конце углеводородной цепи.

Карбоновые кислоты содержат в своём составе одну или несколько карбоксильных групп COOH.

Сложные эфиры производные кислородосодержащих кислот, которые формально являются продуктами замещения атомов водорода гидроокислов OH кислотной функции на углеводородный остаток; рассматриваются также как ацилпроизводные спиртов.

Жиры (триглицериды) природные органические соединения, полные сложные эфиры глицерина и односоставных жирных кислот; входят в класс липидов. Природные жиры содержат в своём составе три кислотных радикала с неразветвлённой структурой и, обычно, чётное число атомов углерода.

Углеводы органические вещества, которые содержат содержащими неразветвленную цепь из нескольких атомов углерода, карбоксильную группу и несколько гидроксильных групп.

Амины содержат в своём составе аминогруппу NH 2

Аминокислоты органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.

Белки высокомолекулярные органические вещества, которые состоят состоящие из альфа – аминокислот, соединённых в цепочку пептидной связью.

Нуклеиновые кислоты высокомолекулярные органические соединения, биополимеры, образованные остатками нуклеотидов.

Остались вопросы? Хотите знать больше о классификации органических соединений?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.