И.С. Нургалиев

Реферат подготовил судент: Перов Виталий Группа:1085/3

Санкт-Петербургский Государственный Политехнический Университет

Санкт-Петербург 2005г.

Зарождение космонавтики

Моментом зарождения космонавтики можно условно назвать первый полёт ракеты, продемонстрировавший возможность преодолевать силу земного притяжения. Первая ракета открыла перед человечеством огромные возможности. Много смелых проектов было предложено. Один из них - возможность полёта человека. Однако, этим проектам было суждено воплотится в реальность только спустя многие годы. Своё практическое применение ракета нашла только в сфере развлечений. Люди не раз любовались ракетными фейерверками, и, вряд ли кто-нибудь тогда мог представить себе её грандиозное будущее.

Рождение космонавтики, как науки, произошло в 1987 году. В этом году была опубликована магистерская диссертация И.В Мещерского, содержащая фундаментальное уравнение динамики тел переменной массы. Уравнение Мещерского дало космонавтике «вторую жизнь»: теперь в распоряжении ракетостроителей появились точные формулы, которые позволяли создавать ракеты основываясь не на опыте предыдущих наблюдении, а на точных математических расчетах.

Общие уравнения для точки переменной массы и некоторые частные случаи этих уравнений уже после их опубликования И. В. Мещерским «открывались» в XX веке многими учёными западной Европы и Америки (Годар, Оберт, Эсно-Пельтри, Леви-Чивита и др.).

Случаи движения тел, когда их масса меняется можно указать в самых различных областях промышленности.

Наибольшую известность в космонавтики получило не уравнение Мещерского, а уравнение Циолковского. Оно представляет собой частный случай уравнения Мещерского.

К. Э. Циолковского можно назвать отцом космонавтики. Он был первым, кто увидел в ракете средство для покорения человеком космоса. До Циолковского на ракету смотрели как на игрушку для развлечений или как на один из видов оружия. Заслуга К. Э. Циолковского состоит в том, что он теоретически обосновал возможность покорения космоса при помощи ракет, вывел формулу скорости движения ракеты, указал на критерии выбора топлива для ракет, дал первые схематические чертежи космических кораблей, привёл первые расчеты движения ракет в поле тяготения Земли и впервые указал на целесообразность создания на орбитах вокруг Земли промежуточных станций для полётов на другие тела Солнечной системы.

Уравнение Мещерского

Уравнения движения тел с переменной массой являются следствиями законов Ньютона. Тем не менее, они представляют большой интерес, главным образом, в связи с ракетной техникой.

Принцип действия ракеты очень прост. Ракета с большой скоростью выбрасывает вещество (газы), воздействуя на него с большой силой. Выбрасываемое вещество с той же, но противоположно направленной силой, в свою очередь, действует на ракету и сообщает ей ускорение в противоположном направлении. Если нет внешних сил, то ракета вместе с выброшенным веществом является замкнутой системой. Импульс такой системы не может меняться во времени. На этом положении и основана теория движения ракет.

Основное уравнение движения тела переменной массы при любом законе изменения массы и при любой относительной скорости выбрасываемых частиц было получено В. И. Мещерским в его диссертации 1897 г. Это уравнение имеет следующий вид:

– вектор ускорения ракеты, –– вектор скорости истечения газов относительно ракеты, M- масса ракеты в данный момент времени, –– ежесекундный расход массы, - внешняя сила.

По форме это уравнение напоминает второй закон Ньютона, однако, масса тела m здесь меняется во времени из-за потери вещества. К внешней силе F добавляется дополнительный член, который называется реактивной силой.

Уравнение Циолковского

Если внешнюю силу F принять равной нулю, то, после преобразований, получим уравнение Циолковского:

Отношение m0/m называется числом Циолковского, и часто обозначается буквой z.

Скорость, рассчитанная по формуле Циолковского, носит название характеристической или идеальной скорости. Такую скорость теоретически имела бы ракета при запуске и реактивном разгоне, если бы другие тела не оказывали на неё никакого влияния.

Как видно из формулы, характеристическая скорость не зависит от времени разгона, а определяется на основе учёта только двух величин: числа Циолковского z и скорости истечения u. Для достижения больших скоростей необходимо повышать скорость истечения и увеличивать число Циолковского. Так как число z стоит под знаком логарифма, то увеличение u даёт более ощутимый результат, чем увеличение z в то же количество раз. К тому же большое число Циолковского означает, что конечной скорости достигает лишь небольшая часть первоначальной массы ракеты. Естественно, такой подход к проблеме увеличения конечной скорости не совсем рационален, ведь надо стремится выводить в космос большие массы, при помощи ракет с возможно меньшими массами. Поэтому конструкторы стремятся прежде всего к увеличению скоростей истечения продуктов сгорания из ракет.

Числовые характеристики одноступенчатой ракеты

При анализе формулы Циолковского было выяснено, что число z=m0/m является важнейшей характеристикой ракеты.

Разделим конечную массу ракеты на две составляющие: полезную массу Мпол, и массу конструкции Мконстр. К полезной относят только массу контейнера, который требуется запустить с помощью ракеты для выполнения заранее запланированной работы. Масса конструкции – вся остальная масса ракеты без топлива(корпус, двигатели, пустые баки, аппаратура). Таким образом M= Мпол + Мконстр; M0= Мпол + Мконстр + Мтопл

Обычно оценивают эффективность транспортировки груза при помощи коэффициента полезной нагрузки р. р= M0/ Мпол. Чем меньшим числом выражен этот коэффициент, тем большую часть от общей массы составляет масса полезного груза

Степень технического совершенства ракеты характеризуется конструктивной характеристикой s.

. Чем большим числом выражается конструктивная характеристика, тем более высокий технический уровень у ракеты-носителя.

Можно показать, что все три характеристики s, z и p связаны между собой следующими уравнениями:

Многоступенчатые ракеты

Достижение очень больших характеристических скоростей одноступенчатой ракеты требует обеспечения больших чисел Циолковского и ещё больших по величине конструктивных характеристик (т.к всегда s>z). Так, например при скорости истечения продуктов сгорания u=5км/с для достижения характеристической скорости 20км/с требуется ракета с числом Циолковского 54,6. Создать такую ракету в настоящее время невозможно, но это не значит, что скорость 20км/с не может быть достигнута при помощи современных ракет. Такие скорости обычно достигаются при помощи одноступенчатых, т.е составных ракет.

Когда массивная первая ступень многоступенчатой ракеты исчерпывает при разгоне все запасы топлива, она отделяется. Дальнейший разгон продолжает другая, менее массивная ступень, и к ранее достигнутой скорости она добавляет ещё некоторую скорость, а затем отделяется. Третья ступень продолжает наращивание скорости, и т.д.

Переменная масса тела возникает в том случае, когда некоторая часть массы тела отделяется с некоторой скоростью от самого тела (возможно также присоединение массы телом во время движения). Отделившаяся часть может быть представлена, например, массой реактивной струи ракетного двигателя. Рассмотрим вначале движение ракеты в космосе, когда кроме силы со стороны реактивной струи, других сил, действующих на ракету, нет. В этом случае газы реактивной струи и ракета являются замкнутой (изолированной) системой и для этой системы выполняется закон сохранения импульса, т.е. суммарный импульс не изменяется. Запишем закон сохранения импульса. Допустим, что в некоторый момент времени ракета массы m движется со скоростью (в инерциальной системе отсчета). За последующий элементарно малый промежуток времени ракетный двигатель выбросит массу газов реактивной струи со скоростью (в той же инерциальной системе). Скорость газов реактивной струи направлена против скорости ракеты. Масса ракеты уменьшится на величину

. (24)

Импульс реактивной струи изменяется только за счет массы газов, выброшенных двигателем - ( . Импульс ракеты изменяется как за счет изменения ее массы так и за счет изменения ее скорости

На основании закона сохранения импульса суммарное изменение импульса равно нулю:

В принятой инерциальной системе отсчета скорость газов реактивной струи определяется как скоростью движения ракеты , так и скоростью истечения газов реактивного двигателя относительно тела ракеты :

Проектируя это векторное равенство на направление движения реактивной струи, имеем

Откуда ясно, что величина скорости реактивной струи (в инерциальной системе отсчета) меньше скорости истечения газов на величину скорости движения самой ракеты. Осуществив подстановку соотношений (24 и 26) в формулу (25), и проведя сокращения получим:

Спроектируем последнее соотношение на направление движения ракеты:

Скорость истечения газов реактивной струи относительно ракеты величина постоянная, т.е. . Тогда, проводя интегрирование в формуле (28) по скорости ракеты от до и по массе от М 0 до М , получим формулу Циолковского (1903 г.):

где М 0 – начальная масса ракеты (включая ракетное топливо на борту); М – масса ракеты, когда ее скорость достигает величины ; и – скорость истечения реактивных газов относительно ракеты; – скорость ракеты до включения ракетного двигателя.

Из формулы Циолковского ясно, что, чем больше скорость истечения газов реактивной струи ракетного двигателя относительно ракеты и , тем большую скорость может приобрести ракета.

Поделим обе части соотношения (27) на , в результате чего получим

В правой части последнего выражения стоит произведение массы ракеты на ускорение, т.е. сила, действующая на ракету. В левой части выражения стоит сила, вызывающая ускорение ракеты. Силу, вызывающую ускорение ракеты, называют реактивной силой. Следовательно, реактивная сила

Если, кроме реактивной силы, на тело ракеты действует также некоторая внешняя сила (например, сила тяжести), то в уравнении движения ракеты она добавляется к силе, развиваемой ракетным двигателем:

.

Это уравнение было получено Мещерским (1897 г.) и носит его имя.

Контрольные вопросы и задачи

1. Сформулируйте закон сохранения энергии в механике.

2. Сформулируйте закон сохранения и превращения энергии.

3. Сформулируйте закон сохранения импульса.

4. Сформулируйте закон сохранения момента импульса.

5. Из ствола орудия массой 2000 кг вылетает снаряд массой 20 кг. Кинетическая энергия снаряда при вылете равна 10 7 Дж . Какую кинетическую энергию получает ствол орудия вследствие отдачи?

6. Тело массой 3 кг движется со скоростью 4 м/с и сталкивается с неподвижным телом такой же массы. Считая удар центральным и неупругим, найти количество тепла, выделившееся при ударе.

7. Пуля, летящая горизонтально, попадает в шар, подвешенный на очень легком жестком стержне, и застревает в нем. Масса пули в 100 раз меньше массы шара. Расстояние от точки подвеса стержня до центра шара равно 1 м. Найти скорость пули, если известно, что стержень с шаром отклонился от удара пули на угол 60°.

8. Ленточным транспортером, который потребляет мощность 10 кВт ,разгружают баржу с углем на пристань, высота которой 2,5 м . Считая кпд равным 75 %, определить, сколько тонн угля можно разгрузить за 20 мин .

9. Ядерный реактор, работая в непрерывном режиме развивает мощность 1000 МВт . Допуская, что пополнение ядерного топлива в течение года не производят, определить на сколько уменьшилась масса ядерного топлива за год работы реактора.

10. Ракета стартует с поверхности Земли. Масса ракеты m = 2000 кг . Ракетный двигатель выбрасывает реактивную струю со скоростью 3 км/с и расходует 50 кг/с ракетного топлива (включая окислитель). Какую подъемную силу обеспечивает этот ракетный двигатель? Какое ускорение ракеты при старте обеспечивает этот двигатель?

11. Ракета в космосе (вдалеке от планет) разгоняется ракетным двигателем. На какую величину увеличится скорость ракеты, если при включении двигателей ее масса была М 0 = 3000 кг , а после выключения двигателей М = 1000 кг . Скорость реактивной струи двигателя относительно ракеты v = 3 км/с . Двигатель работал 1,5 мин ; какую перегрузку испытывали космонавты на борту этой ракеты в начальный момент работы ракетного двигателя?

12. Найти изменение кинетической энергии изолированной системы, состоящей из двух шариков с массами m 1 = 1 кг и m 2 = 2 кг , при их неупругом лобовом (центральном) столкновении. До столкновения они двигались с противоположно направленными скоростями v 1 = 1 м/с и v 2 = 0,5 м/с . Какая скорость будет у шариков после столкновения? Какая энергия выделяется в виде тепла во время столкновения?

Всемирное тяготение

Законы Кеплера

Основанием для установления закона всемирного тяготения Ньютону послужили, наряду с законами динамики, носящими его имя, три открытых Кеплером (1571-1630) закона движения планет:

т 1
1. Все планеты движутся по эллипсам, в одном из фокусов которого находится Солнце.

2. Радиус-вектор, проведенный от Солнца к конкретной планете, отсекает, за равные промежутки времени, равные площади.

3. Квадраты периодов обращения планет вокруг Солнца относятся, как кубы больших полуосей эллипсов их орбит.

Третий закон Кеплера можно записать в следующей форме:

где T 1 и T 2 – периоды обращения двух конкретных планет; R 1 и R 2 – большие полуоси соответствующих эллипсов.

Закон всемирного тяготения

Получим закон всемирного тяготения теоретически, исходя из законов Кеплера и законов динамики Ньютона. Заметим, прежде всего, что окружность является частным случаем эллипса, причем радиус окружности равен соответствующей полуоси эллипса. Ввиду этого и для упрощения задачи, рассмотрим гипотетическую планетарную систему, т.е. систему, где все планеты движутся по круговым орбитам, в центре которых находится Солнце (тем самым будет использован первый закон Кеплера).

Согласно второму закону Кеплера, радиус-вектор конкретной планеты, отсекает, за равные промежутки времени, равные площади, что выполняется, если величина скорости движения конкретной планеты по круговой орбите есть величина постоянная (тем самым использован второй закон Кеплера).

Движение некоторых тел сопровождается непрерывным изменением их массы; например, масса движущейся капли может уменьшаться вследствие испарения или, наоборот, увеличиваться при конденсации паров на ее поверхности; масса ракеты изменяется при выбрасывании продуктов сгорания; по той же причине изменяется масса самолета, расходующего для своего движения запасы топлива, и т. д. Изменение массы тел приводит к некоторому усложнению формул, по которым рассчитывается их движение.

Если система выбрасывает часть своей массы в каком-нибудь определенном направлении, то она получает импульс (количество движения) в противоположном направлении. Это есть принцип реактивного движения, который имеет широкое применение; на нем основаны ракетная техника, расчеты реактивных двигателей самолетов и т. д.

Выведем уравнение движения тел с уменьшающейся массой при некоторых упрощающих предположениях. Допустим, что в начальный момент времени тело с массой покоилось относительно некоторой системы отсчета, связанной, например, с Землей. По истечении времени масса тела сделалась равной а скорость За каждый промежуток времени от тела отделяется масса причем будем предполагать, что по окончании процесса отделения каждая из этих элементарных масс имеет одну и ту же конечную скорость и. Далее предположим, что на тело не действуют внешние силы, поэтому выбрасывание массы производится силами взаимодействия между телом и отделяющимися частями его. Эти внутренние силы по третьему закону механики равны по величине и противоположны по направлению. За время масса тела уменьшается на а скорость увеличивается на Сила действующая на массу изменяет ее импульс на величину, равную

Пренебрегая бесконечно малыми второго порядка, получим

Сила действующая на выбрасываемую массу изменяет скорость ее движения от начального значения до конечного и, т. е.

Так как а отделяющаяся масса равна уменьшению массы тела, т. е. то импульс (количество движения, приобретаемое телом за время будет равен

Разность скоростей есть скорость отделяющихся масс относительно самого тела (по абсолютному значению ; для ракеты это есть средняя скорость выбрасываемых продуктов сгорания относительно корпуса ракеты. Так как направлена противоположно скорости то при замене векторного уравнения (1.43) скалярным вместо следует написать - до; тогда

Знак минус означает, что увеличение скорости тела (положительное сопровождается уменьшением массы тела (отрицательное Если дополнительно предположить, что скорость отделяющихся масс относительно самого тела сохраняется в процессе движения постоянной, то уравнение (1.44) легко интегрируется:

Из этой формулы, полученной для ракет выдающимся теоретиком космонавтики Циолковским, следует, что приращение скорости ракеты за конечный промежуток времени определяется

скоростью истечения газов из выходного сопла ракеты и отношением массы сожженного топлива к оставшейся массе ракеты Например, если то для достижения конечной скорости необходимо отношение массы горючего к массе ракеты, равное 89.

Для ракет и реактивных двигателей сила приложенная к корпусу ракеты или двигателя со стороны продуктов сгорания, называется силой тяги. Для ракет с жидким и твердым топливом (не потребляющих атмосферного воздуха) отделяющиеся массы имеют начальную скорость сгорания), равную скорости корпуса ракеты, и конечную спорость (вне ракеты), равную и, поэтому

Например, если а ежесекундный расход топлива равен то сила тяги будет равна 500 000 Н. У воздушно-реактивных двигателей расход топлива мал по сравнению с количеством воздуха, проходящим через двигатель; расчет силы тяги производится по изменению импульса (количества движения) воздуха, прошедшего за секунду через двигатель.

В этих расчетах предполагалось, что внешние силы отсутствуют. Если же на тело с переменноймассой действуют внешние силы (например, притяжение к Земле, сопротивление атмосферы и т. п.), то полное изменение импульса

Движение некоторых тел сопровождается изменением их массы, например масса ракеты уменьшается вследствие истечения газов, образующихся при сгорании топлива, и т. п.

Выведем уравнение движения тела переменной массы на примере движения ракеты. Если в момент времени t масса ракеты m, а ее скорость v, то по истечении времени dtее масса уменьшится на dm и станет равной т-dm, а скорость станет равной v+dv. Изменение импульса системы за отрезок времени dt

где u - скорость истечения газов относительно ракеты. Тогда

(учли, что dmdv - малый высшего порядка малости по сравнению с остальными). Если на систему действуют внешние силы, то dp=Fdt, поэтому

Второе слагаемое в правой части (10.1) называют реактивной силой F p . Если он противоположен v по направлению, то ракета ускоряется, а если совпадает с v, то тормозится.

Таким образом, мы получили уравнение движения тела переменной массы

(10.2)

которое впервые было выведено И. В. Мещерским (1859-1935).

Идея применения реактивной силы для создания летательных аппаратов высказывалась в 1881 г. Н. И. Кибальчичем (1854-1881). К. Э. Циолковский (1857-1935) в 1903 г. опубликовал статью, где предложил теорию движения ракеты и основы теории жидкостного реактивного двигателя. Поэтому его считают основателем отечественной космонавтики.

Применим уравнение (10.1) к движению ракеты, на которую не действуют никакие внешние силы. Полагая F=0 и считая, что скорость выбрасываемых газов относительно ракеты постоянна (ракета движется прямолинейно), получим

Значение постоянной интегрирования С определим из начальных условий. Если в начальный момент времени скорость ракеты равна нулю, а ее стартовая масса то, то С = u ln m 0 . Следовательно,

(10.3)

Это соотношение называется формулой Циолковского. Она показывает, что: 1) чем больше конечная масса ракеты т, тем больше должна быть стартовая масса ракеты m 0 ; 2) чем больше скорость истечения и газов, тем больше может быть конечная масса при данной стартовой массе ракеты.

Выражения (10.2) и (10.3) получены для нерелятивистских движений, т. е. для случаев, когда скорости v и u малы по сравнению со скоростью с распространения света в вакууме.

Задачи

2.1. По наклонной плоскости с углом наклона а к горизонту, равным 30°, скользит тело. Определить скорость тела в конце третьей секунды от начала скольжения, если коэффициент трения 0,15.

2.2. Самолет описывает петлю Нестерова радиусом 80 м. Какова должна быть наименьшая скорость самолета, чтобы летчик не оторвался от сиденья в верхней части петли?

2.3. Блок укреплен на вершине двух наклонных плоскостей, составляющих с горизонтом углы a = 30° и a = 45°. Гири равной массы (m 1 = m 2 =2 кг) соединены нитью, перекинутой через блок. Считая нить и блок невесомыми, принимая коэффициенты трения гирь о наклонные плоскости равными f 1 = f 2 =f = 0,1 и пренебрегая трением в блоке, определить. 1) ускорение,
с которым движутся гири, 2) силу натяжения нити.

2.4. На железнодорожной платформе установлена безоткатная пушка, из которой производится выстрел вдоль полотна под углом a=45° к горизонту. Масса платформы с пушкой Л/=20 т, масса снаряда т=10 кг, коэффициент трения между колесами платформы и рельсами f = 0,002. Определить скорость снаряда, если после выстрела платформа откатилась на расстояние s=3 м. [ м/с]

2.5. На катере массой т=5 т находится водомет, выбрасывающий m=25 кг/с воды со скоростью u = 7 м/с относительно катера назад. Пренебрегая сопротивлением движению катера, определить: 1) скорость катера через 3 мин после начала движения, 2) предельно возможную скорость катера.

Глава 3

Работа и энергия

Энергия, работа, мощность

Энергия - универсальная мера различных форм движения и взаимодействия. С раз личными формами движения материи связывают различные формы энергии: механическую, тепловую, электромагнитную, ядерную и пр. В одних явлениях форма движения материи не изменяется (например, горячее тело нагревает холодное), в других - переходит в иную форму (например, в результате трения механическое движение превращается в тепловое). Однако существенно, что во всех случаях энергия, отданная (в той или иной форме) одним телом другому телу, равна энергии, полученной последним телом.

Изменение механического движения тела вызывается силами, действующими на него со стороны других тел. Чтобы количественно характеризовать процесс обмена энергией между взаимодействующими телами, в механике вводится понятие работы силы.

Если тело движется прямолинейно и на него действует постоянная сила F, которая составляет некоторый угол а с направлением перемещения, то работа этой силы равна произведению проекции силы F, на направление перемещения (F s =Fcos a), умноженной на перемещение точки приложения силы:

В общем случае сила может изменяться как по модулю, так и по направлению, поэтому формулой (11.1) пользоваться нельзя. Если, однако, рассмотреть элементарное перемещение dr, то силу Г можно считать постоянной, а движение точки ее приложения - прямолинейным. Элементарной работой силы F на перемещении dr называется скалярная величина

dA = Fdr = Fcosa ds = F 2 ds,

где a - угол между векторами F и dr; ds=|dr| - элементарный путь; F s - проекция вектора F на вектор dr (рис. 13).

Работа силы на участке траектории от точки 1до точки 2 равна алгебраической сумме элементарных работ на отдельных бесконечно малых участках пути. Эта сумма приводится к интегралу

(11.2)

Для вычисления этого интеграла надо знать зависимость силы F s от пути t вдоль траектории 1 -2. Пусть эта зависимость представлена графически (рис. 14), тогда искомая работа А определяется на графике площадью заштрихованной фигуры. Если, рапример, тело движется прямолинейно, сила F= const и а = const, то получим

где s - пройденный телом путь (см. также формулу (11.1)).

Из формулы (11.1) следует, что при a < p/2 работа силы положительна, в этом случае составляющая F, совпадает по направлению с вектором скорости движения v (см. рис. 13). Если a > p/2, то работа силы отрицательна. При a = p/2 (сила направлена перпендикулярно перемещению) работа силы равна нулю.

Единица работы - джоуль (Дж): 1 Дж - работа, совершаемая силой 1 Н на пути 1 м(1 Дж=1 Н-м).

Чтобы охарактеризовать скорость совершения работы, вводят понятие мощности:

(11.3)

За время dt сила F совершает работу Fdr, и мощность, развиваемая этой силой, в данный момент времени


т. е. равна скалярному произведению вектора силы на вектор скорости, с которой движется точка приложения этой силы; N - величина скалярная.

Единица мощности - ватт (Вт): 1 Вт - мощность, при которой за время 1 с совершается работа 1 Дж (1 Вт=1 Дж/с).

Уравнение движения тела с переменной массой

Под переменной массой будем понимать массу тел, которая при медленном движении тел меняется за счет потери или приобретения вещества.

Выведем уравнение движения материальной точки с переменной массой на примере движения ракеты. Принцип действия ракеты очень прост. Ракета с большой скоростью выбрасывает вещество (газы), воздействуя на него с большой силой. Выбрасываемое вещество с той же, но противоположно направленной силой в свою очередь действует на ракету и сообщает ей ускорение в противоположном направлении. На ракету действуют внешние силы: сила земной тяжести, гравитационное притяжение Солнца и планет, а также сила сопротивления среды, в которой движется ракета.

Рисунок 1.

Пусть $m(t)$- масса ракеты в произвольный момент времени $t$, а $v(t)$- ее скорость в тот же момент. Количество движения ракеты в этот момент времени будет $mv$. Спустя время $dt$ масса и скорость ракеты получат приращение $dm$ и $dv$ (величина $dm$ отрицательна). Количество движения ракеты станет равным $(m+dm)(v+dv)$. Сюда надо добавить количество движения газов, образовавшихся за время $dt$. Оно равно $dm_{газ} v_{газ} $, где $dm_{газ} $- масса газов, образовавшихся за время $dt$, а $v_{газ} $- их скорость. Вычитая из суммарного количества движения в момент $t+dt$ количество движения системы в момент времени $t$, найдем приращение этой величины за время $dt$. Это приращение равно $Fdt$, где $F$- геометрическая сумма всех внешних сил, действующих на ракету. Таким образом:

$(m+dm)(v+dv)+dm_{газ} v_{газ} -mv=Fdt$. (1)

Время $dt$ и приращения $dm$ и $dv$ устремим к нулю, т.к. нас интересуют предельные отношения или производные $dm/dt$ и $dv/dt$. Поэтому, раскрывая скобки, можно отбросить произведение $dm\cdot dv$, как бесконечно малую высшего порядка. Далее, ввиду сохранения массы, $dm+dm_{газ} =0$. Пользуясь этим, можно исключить массу газов $dm_{газ} $. А разность $v_{отн} =v_{газ} -v$ есть скорость истечения газов относительно ракеты -- скорость газовой струи. С учетом этих замечаний уравнение (1) преобразуется к виду:

$mdv=v_{отн} dm+Fdt$. (2)

Разделив на $dt$, получаем:

$m\frac{dv}{dt} =v_{отн} \frac{dm}{dt} +F$. (3)

Уравнение Мещерского

По форме уравнение (3) совпадает с уравнением, выражающим второй закон Ньютона. Однако масса тела $m$здесь не постоянна, а меняется во времени из-за потери вещества. К внешней силе $F$ добавляется дополнительный член $v_{отн} \frac{dm}{dt} $, который может быть истолкован как реактивная сила, т.е. сила, с которой действуют на ракету вытекающие из нее газы. Уравнение (3) впервые было получено русским механиком И. В. Мещерским. Оно, так же как и эквивалентное ему уравнение (2), называется уравнением Мещерского или уравнением движения точки с переменной массой.

Формула Циолковского

Применим уравнение (2) к движению ракеты, на которую не действуют никакие внешние силы. Полагая $F=0$, получим:

Допустим, что ракета движется прямолинейно в направлении, противоположном скорости газовой струи $v_{отн} $. Если направление полета принять за положительное, то проекция вектора $v_{отн} $ на это направление будет отрицательной и равной $-v_{отн} $. Поэтому в скалярной форме предыдущее уравнение можно записать так $mdv=v_{отн} dm$. Тогда:

$\frac{dv}{dm} =-\frac{v_{отн} }{m} $ (4)

Скорость газовой струи $v_{отн} $ может меняться во время полета. Однако простейшим и наиболее важным является случай, когда она постоянна. Предположение о постоянстве сильно облегчает решение уравнения (4). В этом случае:

Значение постоянной интегрирования С определяется начальными условиями. Допустим, что в начальный момент времени скорость ракеты равна нулю, а ее масса равна $m_{0} $. Тогда из предыдущего уравнения получаем:

$C=v_{отн} \ln \frac{m_{0} }{m} $ тогда: $v=v_{отн} \ln \frac{m_{0} }{m} $ или $\frac{m_{0} }{m} =e^{\frac{v}{v_{отн} } } $

Последнее соотношение называется формулой Циолковского .

    Величина достигаемой ракетой максимальной скорости не зависит от времени сгорания топлива.

    Оптимальным путем изменения достигаемой максимальной скорости является увеличение относительной скорости истечения газов.

    Для получения первой космической скорости при меньшем соотношении между массой ракеты и требуемой массы топлива целесообразно использование многоступенчатых ракет.

Примеры

Пример 1

Космический корабль двигался с постоянной по величине скоростью $v$. Для изменения направления его полета включается двигатель, выбрасывающий струю газа со скоростью $v_{отн} $ относительно корабля в направлении, перпендикулярном к его траектории. Определить угол $\alpha $, на который повернется вектор скорости корабля, если начальная масса его $m_{0} $, а конечная $m$.

Дано: $v$, $v_{отн} $, $m_{0} $, $m$.

Найти: $\alpha $-?

Решение:

Ускорение корабля по абсолютной величине равно:

$a=\omega ^{2} r=\omega v$, причем $v=const$. Поэтому уравнение движения:

$m\frac{dv}{dt} =v_{отн} \frac{dm}{dt} $ переходит в: $mv\omega dt=-v_{отн} dm$.

Так как $d\alpha =\omega dt$ есть угол поворота за время $dt$, интегрируя наше уравнение, получим:

\[\alpha =\frac{v_{отн} }{v} \ln \frac{m_{0} }{m} .\]

Ответ: угол поворота вектора скорости равен: $\alpha =\frac{v_{отн} }{v} \ln \frac{m_{0} }{m} $

Пример 2

Ракета перед стартом имеет массу $m_{0} =250$кг. На какой высоте окажется ракета через $t=20$с после начала работы двигателей? Расход топлива равен $\mu =4$кг/с и скорость истечения газов относительно ракеты $v_{отн} $$=1500$м/с постоянны. Поле тяготения Земли считать однородным.

Дано: $m_{0} =250$кг, $t=20$с, $\mu =4$кг/с, $v_{отн}=1500$м/с.

Найти: $H$-?

Решение:

Рисунок 2.

Запишем уравнение Мещерского в однородном поле тяготения Земли в виде:

где $m=m_{0} -\mu t$, а $v_{0} $- скорость ракеты в момент времени $t$. Разделяя переменные получаем:

\[\Delta v_{0} =(\frac{\mu v_{отн} }{m_{0} -\mu t} -g)\Delta t\]

Решение данного уравнения, удовлетворяющего начальному условию $v_{0} =0$ при $t=0$, имеет вид:

Учитывая что $H_{0} =0$ при $t=0$ получим:

Подставляя начальные значения, получаем:

$H=v_{отн} t-\frac{gt^{2} }{2} +\frac{v_{отн} m_{0} }{\mu } (1-\frac{\mu t}{m_{0} })\ln (1-\frac{\mu t}{m_{0} })=3177,5$м

Ответ: через $20$с ракета окажется на высоте $H=3177,5$м.