Что делают из железа примеры. Железные руды – основа современного производства

Роль железа в истории человеческой цивилизации переоценить очень трудно. Именно оно дало возможность людям противостоять окружающему миру, послужило основой всего, что было создано в дальнейшем. Конечно, первой была бронза, но она из-за своего достаточно узкого распространения стала как бы материалом для избранных, обладающих допуском к источнику сырья. Тогда как железо благодаря наличию практически в любом месте применялось всеми, при этом превосходя своими возможностями бронзу. Источником металла являются широко распространенные минералы. Но путь от них до готовых изделий очень длинный, поэтому резонно поинтересоваться, как и что делают из железной руды.

Несколько слов о руде

Не касаясь конкретных пород минералов, стоит отметить разделение на:

  • богатые руды (содержание железа больше 50 %);
  • рядовые (25-50 %);
  • бедные (железа меньше 25 %).

Другой подход к классификации руды – по составу. Обычно она представляет собой:

  • гидраты окисей;
  • окиси железа;
  • углекислые соли закиси железа.

Для полноты сведений о рудах стоит назвать основные из них:

  • магнитный железняк;
  • красный железняк;
  • бурый железняк;
  • шпатовый железняк.

Месторождения железа широко распространены по миру. Для нужд промышленности в первую очередь используются богатые руды, но и остальные применяются вполне успешно. Правда, для этого они проходят цикл обогащения, включающий в себя ряд операций (размельчение, промывка, продувка, обжиг), в результате которых в исходном сырье повышается концентрация железа и уменьшается содержание пустой породы и примесей.

Что получают из железной руды?

Самый простой ответ – железо – хоть и будет правильным, но не является полным. Это имело место на первом этапе, когда люди только начинали понимать суть металла.

О разновидностях железа

Прежде всего надо сказать, что железо – ковкий металл серебристого цвета, легко реагирующий с другими элементами, в частности с кислородом. Его обозначение – Fe. Фактически железо в промышленности в чистом виде не используется, а применяется в основном как сплав, в первую очередь с углеродом (С). По его содержанию говорят о:

  • чистом железе, С< 0,8 %;
  • стали, когда С < 2,1 %;
  • чугуне, при содержании C > 2,14 %.

Так вот, основным продуктом плавки в современной черной металлургии является чугун, из которого в дальнейшем получается сталь. И она, и чугун часто используются в качестве исходного материала в самых различных областях хозяйства. Но все-таки если посмотреть на исторический процесс, то первым было железо.

Сыродутный способ получения железа

В данном случае очень часто сырьем являлась болотная руда, широко распространенная по всей территории Европы. Это позволяло получать металлическое оружие, орудия производства и хозяйственную утварь практически повсеместно, что значительно ускорило развитие общества, а также открыло путь к освоению новых, недоступных ранее территорий.

Суть самого процесса достаточно проста – в глиняную печь, напоминающую небольшой цилиндр диаметром около метра, сверху слоями засыпали руду и древесный уголь. Сбоку были предусмотрены отверстия (фурмы) для подачи воздуха с помощью мехов. Печь разжигали и начинали плавку руды, постоянно вдувая в печь воздух.

Особенностью технологии были:

  • подача холодного, «сырого» воздуха, отчего и пошло название процесса;
  • достаточно низкая температура плавки, примерно 950 °С.

В результате получался спекшийся кусок смеси железа и шлаков, называемый крицей. Его проковывали для удаления всего мусора, и в итоге оставалось чистое железо. В дальнейшем из него изготавливалась хозяйственная утварь, или металл использовали как заготовку для получения стали. Технологии этого были разные. Многим знакомы такие слова, как харалуг или уклад (предметы, сделанные из определенного материала): они означали стальное оружие, только способы его производства в каждом случае были свои.

Чугун и его передел

Сыродутное производство отличалось малым выходом готового продукта и большим количеством сырья, уходившего в отходы (шлак). В конце концов в металлургии широко стала применяться другая технология, заключающаяся в том, что из железной руды сначала получали чугун, а потом из него – сталь. Для этого необходимо было построить специальные печи, так называемые домны, в которых и происходила плавка сырья.

При подобном подходе развивалась температура порядка 1500 °С, в результате чего руда полностью расплавлялась, окислы Fe, входящие в ее состав, восстанавливались до чистого металла, и он насыщался углеродом. Получался чугун, сплав Fe с C. Обычно 90 % жидкого чугуна отправляется на передел, т. е. после его обработки по специальной технологии в нем уменьшается содержание углерода, результатом чего будет образование стали.

Ее качество регулируется содержанием в составе С, а также специальных легирующих добавок, хрома, ванадия и других, придающих готовому металлу необходимые свойства.

Освоение выплавки железа дало человеку те инструменты, оружие, которые позволили значительно расширить его возможности. Однако первоначальный способ оказался не совсем удобным и требовал слишком большого расхода сырья. Поэтому со временем была принята другая технология, когда из железной руды получают чугун, а уж из него – сталь с необходимыми характеристиками.

Железная руда стала добываться человеком много веков назад. Уже тогда стали очевидными преимущества использования железа.

Найти минеральные образования, содержащие железо, довольно легко, так как этот элемент составляет около пяти процентов земной коры. В целом, железо является четвертым по распространенности элементом в природе.

В чистом виде найти его невозможно, железо содержится в определенном количестве во многих типах горных пород. Наибольшее содержание железа имеет железная руда, добыча металла из которой является наиболее экономично выгодным. От ее происхождения зависит количество содержащегося в ней железа, нормальная доля которого в составе около 15%.

Химический состав

Свойства железной руды, ее ценность и характеристики напрямую зависят от ее химического состава. Железная руда может содержать различное количество железа и других примесей. В зависимости от этого выделяют ее несколько типов:

  • очень богатые, когда содержание железа в рудах превышает 65%;
  • богатые, процент железа в которой варьируется в диапазоне от 60% до 65%;
  • средние, от 45% и выше;
  • бедные, в которых процент полезных элементов не превышает 45%.

Чем больше побочных примесей в составе железной руды, тем больше необходимо энергии на ее переработку, и тем менее эффективным является производство готовой продукции.

Состав породы может представлять собой совокупность различных минералов, пустой породы и других побочных примесей, соотношение которых зависит от ее месторождения.


Состав железных руд крупных месторождений

Пустая порода также может содержать железо, но ее переработка экономически не целесообразна. Наиболее часто встречающиеся минералы представляют собой оксиды, карбонаты и силикаты железа.

Следует отметить, что в составе железистых пород может содержаться огромное количество вредных веществ, среди которых можно выделить серу, мышьяк, фосфор и другие.

Типы железных руд

На сегодняшний день выделяется множество видов железных руд, характеристики и названия которых зависят от состава.

Наиболее часто в природе встречается такой вид, как красный железняк, в основе которого лежит оксид под названием гематит. Этот оксид содержит в составе количество железа, превышающее 70%, и минимальное количество побочных примесей.

Физическое состояние данного оксида может варьироваться от порошкообразного до плотного.

Бурый железняк представляет собой оксид железа с содержанием воды. Его очень часто называют лимонитом. В его составе значительно меньше железа, количество которого обычно не превышает четверти. В природе такой железняк содержится в виде рыхлой, пористой породы, со значительным содержанием марганца и фосфора. Обычно обильно насыщен влагой, имеет в качестве пустой породы глину. Из него очень часто делают чугун, несмотря на незначительную часть железа, так как он очень легко перерабатывается.

Магнитные руды отличаются тем, что в их основе заложен оксид, имеющий магнитные свойства, но при сильном нагреве они теряются. Количество этого типа породы в природе ограничено, но содержание железа в нем может не уступать красному железняку. Внешне он выглядит как твердые кристаллы черно-синего цвета.

Шпатовый железняк представляет собой рудную породу, в основе которой лежит сидерит. Очень часто имеет в составе значительное количество глины. Этот тип породы относительно тяжело найти в природе, что на фоне малого количества содержимого железа делает его редко используемым. Поэтому отнести их к промышленным типам руд невозможно.

Кроме оксидов в природе содержаться другие руды на основе силикатов и карбонатов. Количество содержимого железа в породе очень важно для ее промышленного использования, но также важно наличие полезных побочных элементов, таких как никель, магний, и молибден.

Отрасли применения

Сфера применения железной руды практически полностью ограничена металлургией. Ее используют, в основном, для выплавки чугуна, который добывают с помощью мартеновских или конверторных печей. На сегодняшний день чугун используется в различных сферах жизнедеятельности человека, в том числе в большинстве видов промышленного производства.

Не в меньшей степени используются различные сплавы на основе железа – наиболее широкое применение обрела сталь благодаря своим прочностным и антикоррозийным свойствам.

Чугун, сталь и различные другие сплавы железа используются в:

  1. Машиностроении, для производства различных станков и аппаратов.
  2. Автомобилестроении, для изготовления двигателей, корпусов, рам, а также других узлов и деталей.
  3. Военной и ракетной промышленности, при производстве спецтехники, оружия и ракет.
  4. Строительстве, в качестве армирующего элемента или возведения несущих конструкций.
  5. Легкой и пищевой промышлености, в качестве тары, производственных линий, различных агрегатов и аппаратов.
  6. Добывающей промышленности, в качестве спецтехники и оборудования.

Месторождения железной руды

Мировые запасы железной руды ограничены в количестве и своем местоположении. Территории скопления запасов руд называют месторождениями. На сегодняшний день месторождения железных руд делят на:

  1. Эндогенные. Они характеризуются особым расположением в земной коре, обычно в виде титаномагнетитовых руд. Формы и расположения таких вкраплений разнообразны, могут быть в форме линз, пластов, расположенных в земной коре в виде залежей, вулканообразовных залежей, в виде различных жил и других неправильных форм.
  2. Экзогенные. К этому типу относятся залежи бурых железняков и других осадочных пород.
  3. Метаморфогенные. К которым относятся залежи кварцитов.

Месторождения таких руд можно встретить на территории всей нашей планеты. Наибольшее количество залежей сконцентрировано на территории постсоветских республик. В особенности Украины, России и Казахстана.

Большие запасы железа имеют такие страны как Бразилия, Канада, Австралия, США, Индия и ЮАР. При этом практически в каждой стране на земном шаре имеются свои разрабатываемыми месторождения, в случае дефицита которых, порода импортируется из других стран.

Обогащения железных руд

Как было указано, существует несколько типов руд. Богатые можно перерабатывать непосредственно после извлечения из земной коры, другие необходимо обогатить. Кроме процесса обогащения, переработка руды включает в себя несколько этапов, таких как сортировка, дробление, сепарация и агломерация.

На сегодняшний день существует несколько основных способов обогащения:

  1. Промывка.

Применяется для очистки руд от побочных примесей в виде глины или песка, вымывание которых проводят с помощью струй воды под высоким давлением. Такая операция позволяет увеличить количество содержимого железа в бедной руде примерно на 5%. Поэтому его используют только в комплексе с другими типами обогащения.

  1. Гравитационная очистка.

Выполняется с помощью специальных типов суспензий, плотность которых превышает плотность пустой породы, но уступает плотности железа. Под воздействием гравитационных сил побочные компоненты поднимаются на верх, а железо опускается на низ суспензии.

  1. Магнитная сепарация.

Наиболее распространенный способ обогащения, который основывается на различном уровне восприятия компонентами руды воздействия магнитных сил. Такую сепарацию могут проводить с сухой породой, мокрой, или в поочередном сочетании двух ее состояний.

Для переработки сухой и мокрой смеси используют специальные барабаны с электромагнитами.

  1. Флотация.

Для этого метода раздробленную руду в виде пыли опускают в воду с добавлением специального вещества (флотационный реагент) и воздуха. Под действием реагента железо присоединяется к воздушным пузырькам и поднимается на поверхность воды, а пустая порода опускается на дно. Компоненты, содержащие железо, собираются с поверхности в виде пены.

При этом столь широкое использование стали, которое мы наблюдаем в наши дни, обусловлено, в первую очередь, тем, что железо является одним из наиболее распространённых в земной коре элементов.

Однако железо находится в природе, преимущественно, в виде оксидов, реже – сульфидов. Соответственно, для получения железа в чистом виде (или в виде стали – сплава железа с углеродом) необходимо провести химическую реакцию восстановления. При этом единственным восстановителем, который целесообразно использовать для этой цели в условиях нашей планеты, является углерод.

Связано это с тем, что только углерод, благодаря тому, что растения (преимущественно деревья), используя энергию солнца, концентрируют его в процессе построения собственных «тел». При этом углерод, окисляясь в процессе горения, не только восстанавливает железо из его соединений, но и обеспечивает необходимую температуру для интенсивного протекания этого процесса (поскольку реакции восстановления железа эндотермичны и требуют затрат тепла).

На протяжении нескольких тысячелетий для производства железа из руд люди использовали собственно древесину, которую обугливали при недостатке воздуха, получая древесный уголь. При обугливании протекают эндотермические процессы удаления влаги и разложения и удаления сложных органических соединений, в результате чего использование древесного угля вместо дров позволяло достичь более высоких температур.

Для восстановления железа из руд использовался небольшой шахтный (то есть в виде сложенного из камней, глины и прочих огнеупорных материалов цилиндра) агрегат, называемый «сыродутный горн». В него слоями загружали руду и древесный уголь, а снизу подавали через трубки-фурмы необходимый для горения воздух. Поскольку температура в горне была недостаточно высока для расплавления полученного железа, оно скапливалось в нижней части в виде крицы – своего рода «железной губки», пропитанной шлаком – расплавом оксидов, которые не восстанавливались (в основном кремния и железа, а также некоторых других). В дальнейшем крицу проковывали, получая железный брусок, из которого с помощью кузнечной ковки изготавливали необходимые предметы.

Конструкции горнов у различных народов были различны, но принцип действия оставался неизменным. Такой способ применялся несколько тысяч лет, пока в XV веке в Европе не возросла потребность в металле. Для удовлетворения этой потребности размеры горнов стали увеличивать, а для подачи воздуха начали применять мощные мехи, приводимые в движение водяным колесом.

При этом температура возросла настолько, что железо стало насыщаться углеродом и плавиться: результатом плавки стала уже не железная крица, почти не содержащая углерода, а жидкий чугун – сплав железа с достаточно высоким содержанием этого элемента. Сам же сыродутный горн, увеличиваясь в размерах, постепенно превратился в доменную печь, которая и по сей день остаётся основным агрегатом для восстановления железа из руд. Отметим, что в Китае к использованию чугуна перешли ещё раньше, однако таких последствий, как в Европе, это не имело.

Таким образом, использование доменных печей обеспечило требуемую производительность, однако хрупкий чугун далеко не во всех сферах мог заменить ковкое железо. По этой причине там, где хрупкость не играла существенной роли, использовали чугун, а часть чугуна подвергали обезуглероживанию («фришеванию», т.е. «очитке»), в ходе которого получалось железо.

Для этого чугунный слиток помещали в открытый горн, заполненный горящим древесным углём, в нижнюю часть которого через фурмы подавали воздух. Чугун плавился и каплями стекал по углю в нижнюю часть горна. При этом он контактировал с потоком воздуха, в результате чего углерод окислялся и удалялся из металла. В результате в нижней части горна формировалась железная крица, которую далее обрабатывали обычным способом.

К началу XVIII века производительность доменных печей увеличилась настолько, что в отдельных странах, в первую очередь в Великобритании остро встала проблема нехватки древесины. На помощь пришли всё те же растения, только произраставшие миллионы лет назад и дошедшие до нас в виде каменного угля.

Однако проблема заключалась в том, что уголь содержит значительное количество серы, которая, попадая в металл, приводит к тому, что он трескается при ковке («красноломкость»). Тем не менее, долгие годы неудачных экспериментов увенчались успехом и в XVIII веке стало возможным выплавлять и фришевать чугун с помощью каменного угля.

Для использования в доменной печи каменный уголь, как в своё время древесину, подвергали нагреву без доступа воздуха, в результате чего из него удалялись сложные органические летучие вещества, а сам уголь превращался в достаточно прочный пористый материал – кокс. Железо же с помощью угля стали получать из чугуна в печах особой конструкции, получивших название пудлинговых.

Однако в середине XIX века значительно развившаяся европейская промышленность предъявила новые требования к свойствам используемых материалов, которым железо и чугун уже не удовлетворяли – чугун был слишком хрупким, а железо слишком мягким. Отметим, что в это время умели получать и жидкую сталь путём переплавки небольших кусочков стали в тиглях, однако производительность этого способа была очень низкой.

Для решения этой проблемы в середине XIX века англичанин Генри Бессемер разработал конструкцию бессемеровского конвертера, в котором, путём продувки жидкого чугуна воздухом стало возможно получить в значительных количествах сталь в жидком виде – литую сталь. Немного позднее англичанин Сидни Томас усовершенствовал конвертер Бессемера, в результате чего стало возможным выплавлять качественную сталь из чугуна с высоким содержанием фосфора (фосфор, как и сера – главные вредные примеси в стали).

Почти одновременно с Бессемером немцы Вильгельм (Уильям) и Фридрих Сименсы разработали печь особой конструкции, а французы, отец и сын Мартены – способ выплавки в ней литой стали из чугуна и металлолома. Последнее было особенно важно, поскольку человечество накопило к тому времени значительное количество лома, способы переработки которого были несовершенны.

До середины XX века бессемеровский и томасовский конвертера (в меньшей степени) и мартеновская печь (в большей степени) были основными агрегатами для выплавки рядовой стали из чугуна. Для выплавки же стали повышенного качества продолжали использовать тигельный способ, который на рубеже XIX и XX веков был вытеснен способом выплавки стали в электропечах (в основном – дуговых), которые также стали использоваться для производства стали повышенного качества.

Однако с развитием техники получения чистых газов в промышленных масштабах получил распространение кислородный конвертер, в котором чугун продувался не воздухом, как в конвертерах Бессемера и Томаса, а чистым кислородом. Всю вторую половину XX века этот способ вытеснял своих предшественников из металлургической практики, а в настоящее время он является главным способом получения стали из доменного чугуна.

Вторым по важности способом в настоящее время является производство стали в электропечах, которые только из агрегатов для получения стали повышенного качества стали также важными агрегатами для переплава металлического лома. Дело в том, что в конвертере можно использовать до 25 % лома, в то время как электропечь может работать полностью на ломе.

Помимо чугуна и лома электропечь может переплавлять металлизованное сырьё (DRI – железо прямого восстановления и HBI – горячебрикетированное железо) – практически чистое железо, полученное в агрегатах различной конструкции путём восстановления железорудных материалом восстановительным газом (СО и Н2).

Перейдём теперь непосредственно к технологии производства чугуна и стали. Если на протяжении всей истории человечества, до начала XX века, добытая железная руда подвергалась минимальной обработке – отмывалась от загрязнений, дробилась, сортировалась по крупности, то сейчас путь её от карьера до доменной печи весьма длителен.

Связано это с исчерпанием запасов руд с высоким содержанием железа (50-60 %) – так называемых богатых руд. Современные руды в своей массе бедные, содержащие порядка 20-30 % железа, что делает их переработку в доменной печи невыгодной из-за очень высокого расхода топлива и малого выхода чугуна, а зачастую и технологически невозможной.

Для решения этой проблемы на рубеже XIX и XX веков стали применять различные способы обогащения руд, благодаря которым от них отделяется не содержащая железа пустая порода, а содержание железа в полученном продукте возрастает, в среднем, до 60 %.

Однако, поскольку для отделения пустой породы руду необходимо подвергнуть дроблению до пудрообразного состояния, использование продукта обогащения – железорудного концентрата, в доменной печи невозможно. Проблема заключается в том, что для эффективной доменной плавки необходимо, чтобы загружаемые в печь материалы (шихта) имели оптимальную крупность (25-40 мм) для обеспечения прохода через них большого количества газов, образующихся в нижней части печи при горении кокса

Железорудные концентраты, производимые в настоящее время при обогащении руд, представлены частицами 0,1 мм и меньше. Такие мелкие рудные материалы непригодны для непосредственного использования в доменной плавке. Столб шихты высотой 20 м, сложенный из частиц такой крупности, практически непроницаем для газа. А если подобные пылевидные частицы и попадают в печь, то уже при скорости 0,5 м/с выносятся из неё восходящим потоком газа.

В настоящее время существуют три основных способа окускования железорудных материалов: агломерация, производство окатышей (окомкование) и брикетирование. Каждый из них обладает своими преимуществами и недостатками, которые обуславливают их применение в конкретных производственных условиях.

Брикетирование, то есть окускование мелкодисперсных материалов посредством их прессования (обычно с добавкой связующего) исторически было первым способом окускования, однако позднее было вытеснено агломерацией и окомкованием. В настоящее время брикетирование вновь начинает использоваться на металлургических предприятиях, преимущественно для окускования пылевидных железосодержащих отходов. Однако, зачастую, из-за неудовлетворительной брикетируемости материалов используются различные связующие (как правило, цемент), что приводит к снижению технико-экономических показателей доменной плавки. Кроме того, при брикетировании отходов требуется использование усреднительного оборудования для обеспечения стабильности химсостава и свойств продукта. По этим причинам брикетирование используется лишь эпизодически на отдельных предприятиях.

Окомкование производят непосредственно на горно-обогатительном комбинате (ГОК), где руда подвергается обогащению. При этом железорудный концентрат увлажняют и смешивают со связующим – бентонитовой глиной. Затем полученную массу помещают в барабанный или чашевый окомкователь, где в ходе вращения формируются достаточно прочные шарики – окатыши. Получившиеся сырые окатыши помещают на движущуюся ленту обжиговой машины (схожей по конструкции с рассматриваемой далее агломерационной машиной), где по ходу движения они продуваются раскалёнными продуктами сгорания природного газа. При этом мельчайшие частички концентрата оплавляются и спекаются между собой, в результате чего получается прочный кусковой материал.

Таким образом, на металлургическое предприятие окатыши прибывают уже в готовом виде по железной дороге или по воде, если комбинат расположен близ реки или моря, что позволяет избежать перевозок пылевидного концентрата с неизбежными его потерями от выдувания, вытекания и при перегрузках. Однако в их производстве используется только пылевидный железорудный концентрат, что не позволяет использовать более крупнофракционные материалы, в том числе железосодержащие отходы.

Агломерат же, ввиду его склонности к разрушению при перевозке, напротив, производят непосредственно на металлургических комбинатах. Сырьём для них служит также железорудный концентрат, который поступает на предприятие с ГОКа обычно по железной дороге. Агломерация является на сегодняшний день наиболее массовым способом окускования.

Аглофабрики, как правило, располагаются на территории металлургического комбината или на небольшом расстоянии от него и тесно интегрированы в его структуру. Это связано не только с невозможностью осуществлять транспортировку агломерата на дальние расстояния, но и с возможностью использования в качестве добавок в аглошихту широкого спектра железосодержащих отходов других производств. Однако процесс агломерации является одним из наиболее экологически неблагополучных (в первую очередь по выбросам оксидов серы, углерода, а также пыли).

Агломерация как способ окускования был открыт случайно в 1887 г. английскими исследователями Ф. Геберлейном и Т. Хатингтоном в ходе опытов по десульфурирующему (обессеривающему) обжигу руд цветных металлов на колосниковой решётке.

В ходе исследований выяснилось, что при обжиге руд с высоким содержанием серы выделялось так много тепла и температура поднималась до такого уровня, что происходило приплавление обожженных кусков руды друг к другу. После окончания процесса слой руды превращался в закристаллизовавшуюся пористую массу – спёк. Куски раздробленного спёка, которые назвали агломератом, оказались вполне пригодными по своим физико-химическим свойствам для плавки в печи шахтного типа, к которым относится и доменная печь.

Сравнительная простота технологии и высокая тепловая эффективность слоевого окислительного обжига сульфидных руд привлекли внимание специалистов чёрной металлургии. Появилась идея разработать термический способ окускования железорудных материалов на базе подобной технологии. Отсутствие в железных рудах серы как источника тепла предполагалось компенсировать добавкой к руде мелких частиц топлива – угля или кокса.

Железорудный агломерат по такой технологии в лаборатории впервые был получен в Германии в 1902-1905 гг. Некоторое время для производства агломерата использовались чашевые установки (Геберлейна, Гриневальта, AIB), а также, в 20-30 гг. XX столетия, трубчатые вращающиеся печи (Полизиуса).

Поскольку каждая из упомянутых агломерационных установок обладала теми или иными существенными недостатками (один из самых серьезных – низкая производительность), ни чаши, ни трубчатые печи не получили широкого распространения в металлургии. Прорыв в области окускования руд был сделан двумя американскими инженерами А. Дуайтом и Р. Ллойдом, которые в 1906 г. разработали конструкцию, а в 1911 г. ввели в эксплуатацию первую конвейерную агломерационную машину непрерывного действия.

Процесс спекания руд шел по тому же принципу, что и в котлах Геберлейна или в чашах – тепло, необходимое для оплавления рудных зёрен, выделялось при сжигании частичек твёрдого топлива в слое железорудного концентрата или мелкой руды (аглоруды). Для горения через слой материалов (шихты) просасывался воздух, а для обеспечения прохода воздуха через слой шихты, она размещалась на колосниковой решётке. Успех в быстром и широком распространении агломерации как главного способа окускования железорудных материалов был предопределен очень удачной конструкцией агломерационой машины, обеспечивающей непрерывность процесса.

Конвейерная агломерационная машина (рис.) состоит из следующих основных частей: спекательных тележек – паллет (днище которых представляет колосниковую решетку с зазорами 5-6 мм), перемещающихся по направляющим – стальным рельсам; вакуум-камер (обеспечивающих разряжение под колосниками паллет для просасывания воздуха); привода (состоящего из большого зубчатого колеса диаметром 4-6 м, приводимого во вращение электродвигателем).

Работает машина следующим образом. Медленно вращающееся колесо в головной части машины захватывает зубцами подкатившуюся внизу тележку и поднимает её на верхнюю ветвь направляющих, где она прижимается к предыдущей, толкает её и через неё – все остальные паллеты, находящиеся на рабочей ветви машины. При этом последняя тележка в хвостовой части машины переходит на круговой участок направляющих и далее – на «холостую» ветвь машины, имеющую небольшой уклон к головной её части.

Тележка подхватывается зубчатым колесом, поднимается вверх, и цикл повторяется. При подходе к загрузочному устройству паллета заполняется шихтой и проходит под зажигательным горном, где осуществляется воспламенение топлива шихты в поверхностном слое. В течение времени, пока тележка находится на рабочей ветви машины, через слой шихты непрерывно просасывается воздух (под действием разрежения в вакуум-камерах, который создает эксгаустер).

Скорость движения паллет подбирается такой, чтобы за время перемещения тележки от зажигательного горна до последней вакуум-камеры зона горения – формирования агломерата – прошла сверху вниз весь слой (толщиной 200-400 мм). При опрокидывании паллеты в конце машины происходит её освобождение от образовавшегося пористого агломерационного спёка, который затем охлаждается и подвергается дроблению с последующим разделением по крупности.

Кроме железорудного концентрата и топлива в состав агломерационной шихты входит молотый известняк. Он является источником оксида кальция, который необходим для того, чтобы, взаимодействуя с тугоплавким оксидом кремния, который находится в пустой породе концентрата, перевести последний в состав легкоплавких соединений, которые затем формируют в доменной печи шлак.

Второй задачей оксида кальция является связывание серы, которая, как уже говорилось, существенно ухудшает качество металла. При использовании же оксида кальция, значительное количество серы удаляется из печи со шлаком и не попадает в металл. Известняк можно добавлять и непосредственно в доменную печь, однако в этом случае источником тепла на его нагрев и осуществление реакций разложения карбонатов и гидратов, а также образования легкоплавких соединений, будет служить дорогостоящий кокс. В то же время в процессе агломерации для тех же целей используется более дешёвая коксовая мелочь – фактически отход производства кокса.

Вторым компонентом доменной шихты, помимо железорудных материалов – агломерата и окатышей, является кокс. Помимо того, что он является топливом и восстановителем, чрезвычайно высока его роль для протекания доменного процесса– поскольку он занимает большую часть объёма доменной печи и остаётся при этом твёрдым (в то время как агломерат и окатыши плавятся), именно кокс обеспечивает прохождение газов по высоте доменной печи, что определяет как производительность агрегата, так и эффективность восстановления железа из оксидов.

Как уже говорилось, кокс представляет собой продукт нагрева каменного угля без доступа воздуха. Этот процесс происходит в узких вертикальных камерах коксования, объединённых в батареи по нескольку десятков камер (рис.), между которыми располагаются простенки, в которых сжигается газообразное топливо. Таким образом, камеры чередуются с простенками, один простенок греет две соседние камеры, а одна камера обогревается двумя простенками.

Каждая коксовая печь снабжена двумя герметичными дверями по торцам. В своде печи имеются три отверстия для загрузки шихты из трех бункеров загрузочного вагона. Под печью располагаются кирпичные регенераторы.

Нагрев угольной шихты в печи происходит только посредством теплопроводности от двух её стен. Температура сгорания газов в простенках составляет 1350-1400 °С, коксуемый уголь постепенно прогревается до 1100 °С. Выделяющиеся из шихты газы немедленно отводятся из печи через специальные отверстия. «Грязный» коксовый газ через газосборник и газоотводы направляется в химические цехи. Процесс коксования занимает 17-25 часов.

С машинной стороны печь обслуживается перемещающимся по рельсовому пути коксовыталкивателем. С помощью штанги эта машина выталкивает коксовый пирог из печи в тушильный вагон. Предварительно с коксовой стороны двересъёмная машина снимает дверь. После тушения кокса (водой или инертным газом – азотом) он выгружается на наклонную рампу и конвейером направляется на коксосортировку.

1 – приёмный бункер для сырого каменного угля; 2 – отделение для дробления и смешения угля; 3 – распределительная башня; 4 – погрузочная тележка; 5 – камера коксования; 6 – кокс; 7 – коксовыталкиватель; 8 – тушильный вагон; 9 – тушильная башня; 10 – платформа для выгрузки охлаждённого кокса (рампа); 11 – отвод коксового газа

Как правило, кокс сортируется на классы: 0-10, 10-25, 25-40 и крупнее 40 мм. Появление доменных печей большой мощности потребовало дополнительного разделения доменного кокса на два класса: крупнее 60 и 40-60 мм. В практике коксохимического производства сложились следующие виды доменного кокса, различающиеся по крупности и месту отбора. Кокс, выдаваемый из камеры коксования, называется валовым. Кокс, прошедший сортировку по крупности, размером более 25 мм, называется металлургическим или доменным. Кокс, переданный в доменный цех и прошедший там обязательную сортировку по крупности, называется скиповым. Средний выход металлургического кокса (>25 мм) из валового составляет 93-94 %.

Помимо описанных выше коксовых батарей кокс также производят в горизонтальных камерах со сводом, а сжигание топлива (коксового газа, выделяющегося из угля при коксовании) происходит не в простенках, а непосредственно внутри камеры. Однако такой способ распространён в существенно меньшей степени и на отечественных предприятиях в настоящее время не применяется.

Железная руда представляют собой особое минеральное образование, включающее железо, а также его соединения. Руду считают железной в том случае, если она содержит этот элемент в достаточных объемах для того, чтобы было экономически выгодно его извлекать.

Основной разновидностью железной руды является Он содержит почти 70% окиси и закиси железа. Эта руда имеет черный или серо-стальной цвет. Магнитный железняк на территории России добывают на Урале. Встречается он в недрах Высокая, Благодать и Качканар. На территории Швеции его находят в окрестностях Фалуня, Даннемора и Гелливара. В США - это Пенсильвания, а в Норвегии - Арендаль и Персберг.

В черной металлургии железорудную продукцию разделяют на три вида:

Сепарированную железную руду (с низким содержанием железа);

Аглоруду (со средним содержанием железа);

Окатыши (сырую железосодержащую массу).

Морфологические типы

Богатыми считаются такие залежи железной руды, которые содержат более 57% железа в своем составе. К бедным рудам относят те, в которых не менее 26% железа. Ученые разделили железную руду на два морфологических типа: линейный и плоскоподобный.

Железная руда линейного типа представляет собой рудные клиновидные тела в зонах изгибов и земных разломов. Данный тип отличается особенно большим содержанием железа (от 50 до 69%), но сера и фосфор в такой руде содержится в небольшом количестве.

Плоскоподобные залежи встречаются на вершинах пластов железистых кварцитов, которые представляют собой типовую кору выветривания.

Железная руда. Применение и добыча

Богатая железная руда применение находит для получения чугуна и в основном идет на выплавку в конвертерное и мартеновское производство или же непосредственно на восстановление железа. Небольшое количество используется как природная краска (охра) и утяжелитель глинистых

Объем мировых запасов разведанных месторождений составляют 160 млрд. тонн, а железа в них содержится около 80 млрд. тонн. Железная руда найдена на Украине, а самыми крупными запасами чистого железа обладают Россия и Бразилиия.

Объемы мировой добычи руды растут с каждым годом. В большинстве случаев железная руда добывается открытым методом, суть которого заключается в том, что всю нужную технику доставляют к месторождению, и там же строят карьер. Глубина карьера составляет в среднем около 500 м, а его диаметр зависит от особенностей найденного месторождения. После этого при помощи специального оборудования добывают железную руду, складывают на машины, приспособленные для перевозки тяжелых грузов, и доставляют из карьера на предприятия, которые занимаются переработкой.

Недостатком открытого метода является возможность добывать руду только на небольшой глубине. Если же она лежит намного глубже, приходится возводить шахты. Вначале делают ствол, напоминающий глубокий колодец с хорошо укрепленными стенками. В разные стороны от ствола отходят коридоры, так называемые штреки. Найденную в них руду взрывают, а потом ее куски поднимают на поверхность с помощью особого оборудования. Добыча железной руды таким способом эффективна, но связана с серьезной опасностью и затратами.

Существует еще другой способ, при помощи которого добывают железную руду. Его называют СГД или скважинной гидродобычей. Руда извлекается из-под земли таким образом: бурят скважину, опускают в нее трубы с гидромонитором и очень мощной водной струей дробят породу, которую потом поднимают на поверхность. Добыча железной руды этим способом безопасна, однако, к сожалению, неэффективна. Так удается добыть лишь 3% руды, а 70% добывается с помощью шахт. Однако разработка метода СГД совершенствуется, и есть большая вероятность, что в будущем этот вариант станет основным, вытеснив шахты и карьеры.

Wrote in July 26th, 2017

Редко бывает так, что я посещаю одно и то же производство дважды. Но когда меня опять позвали на Лебединский ГОК и ОЭМК, то я решил, что нужно пользоваться моментом. Интересно было посмотреть, что изменилось за 4 года с прошлой поездки, к тому же в этот раз я был больше экипирован и помимо фотоаппарата, захватил с собой еще и 4К камеру для того, чтобы передать вам в действительности всю атмосферу, обжигающие и завораживающие глаза кадры с ГОКа и сталелитейных цехов Оскольского электрометаллургического комбината.

Сегодня специально для репортаж о добыче железной руды, ее переработке, переплавке и получении стальных изделий.


Лебединский ГОК является крупнейшим российским предприятием по добыче и обогащению железной руды и имеет самый крупный в мире карьер по добыче железной руды. Комбинат и карьер расположены в Белгородской области, недалеко от г. Губкин. Предприятие входит в компанию "Металлоинвест" и является лидирующим производителем железорудной продукции в России.

Вид со смотровой площадки при въезде на карьер завораживает.

Он действительно огромный и разрастается с каждым днем. Глубина карьера Лебединского ГОКа - 250 м от уровня моря или 450 м - от поверхности земли (а диаметр - 4 на 5 километров), в него постоянно просачиваются подземные воды, и если бы не работа насосов, то он заполнился до самого верха за месяц. Он дважды занесен в книгу рекордов Гиннесса как крупнейший карьер по добыче негорючих полезных ископаемых.

Так он выглядит с высоты полета шпионского спутника.

Помимо Лебединского ГОКа, в состав Металлоинвест также входит Михайловский ГОК, что расположен в Курской области. Вместе два крупнейших комбината выводят компанию в мировые лидеры по добыче и переработке железной руды в России, и в 5-ку в мире по производству товарной железной руды. Совокупные разведанные запасы этих комбинатов оцениваются в 14,2 млрд тонн по международной классификации JORС, что гарантирует около 150 лет эксплуатационного периода при текущем уровне добычи. Так что горняки и их дети будут надолго обеспечены работой.

Погода в этот раз также не была солнечной, местами даже моросил дождь, чего не было в планах, но от того фотографии вышли еще контрастнее).

Примечательно, что прямо “в сердце” карьера расположен участок с пустой породой, вокруг которого уже добыли всю руду содержащую железо. За 4 года он заметно уменьшился, поскольку сие мешает дальнейшему развитию карьера и его планомерно вырабатывают тоже.

Железную руду загружают тут же в жд составы, в специальные усиленные вагоны, которые вывозят руду из карьера, они называются думпкары, их грузоподъемность - 120 тонн.

Геологические пласты, по которым можно изучать историю развития Земли.

Кстати, верхние слои карьера, состоящие из каменных пород, не содержащих железо, не уходят в отвал, а перерабатываются в щебень, который потом используется как стройматериал.

Гигантские машины с высоты обзорной площадки кажутся не больше муравья.

По этой железной дороге, которая связывает карьер с заводами, руду транспортируют на дальнейшую переработку. Об этом рассказ будет дальше.

В карьере работает много всевозможной техники, но самая заметная, конечно же, - это многотонные самосвалы "Белаз" и "Caterpillar".

Кстати, у этих гигантов есть такие же автомобильные номера, как и обычных легковых авто и они зарегистрированы в ГИБДД.

В год оба горно обогатительных комбината входящих в Металлоинвест (Лебединский и Михайловский ГОК) производят около 40 млн. тонн железной руды в виде концентрата и аглоруды (это не объем добычи, а обогащенная уже руда, то есть отделенная от пустой породы). Таким образом выходит, что в день на двух ГОКах производится в среднем около 110 тысяч тонн обогащенной железной руды.

Этот Белаз за один раз перевозит до 220 тонн железной руды.

Экскаватор дает сигнал и он аккуратно дает задний ход. Всего несколько ковшов и кузов гиганта заполнен. Экскаватор еще раз дает сигнал и самосвал отъезжает.
У этого экскаватора "Хитачи", который является самым крупным в карьере емкость ковша 23 куб.м.

"Белаз" и "Caterpillar" чередуются. Импортный самосвал перевозит кстати всего 180 тонн.

Скоро и этой грудой заинтересуется водитель "Хитачи".

Интересная фактура у железной руды.

Ежесуточно в карьере Лебединского ГОКа работает 133 единицы основной горной техники (30 большегрузных самосвалов, 38 экскаваторов, 20 бурстанков, 45 тяговых агрегатов).

Белазы помельче

Взрывы увидеть не удалось, да и редко когда сми или блогеров пускают на них из-за норм безопасности, Такой взрыв делают один раз в три недели. Вся техника и работники по нормам безопасности перед этим выводится из карьера.

Ну а потом самосвалы выгружают руду ближе к железной дороге тут же в карьере, откуда другие экскаваторы перегружают ее в думпкары, о которых я писал выше.

Затем руду везут на обогатительную фабрику, где железистые кварциты подвергаются дроблению и происходит процесс отделения пустой породы методом магнитной сепарации: руду измельчают, потом отправляют на магнитный барабан (сепаратор), к которому в соответствии с законами физики все железное прилипает, а не железное - смывается водой. После этого из полученного железорудного концентрата делают окатыши и ГБЖ, которое затем используется для выплавки стали.

На фото мельница, перемалывающая руду.

В цехах стоят такие поильники, все-таки тут жарко, а без воды никак.

Масштабы цеха, где в барабанах дробится руда впечатляют. Руда перемалывается естественным образом, когда камни бьются друг о друга в процессе вращения. В барабан с семиметровым диаметром помещается около 150 тонн руды. Существуют и 9-метровые барабаны, их производительность больше чуть ли не вдвое!

Зашли на минуту в пульт управления цехом. Здесь довольно скромно, но напряжение чувствуется сразу: работают диспетчеры и контролируют рабочий процесс на пультах управления. Все процессы автоматизированы, поэтому любое вмешательство - будь то остановка или запуск какого либо из узлов проходит через них и с их непосредственным участием.

Следующей точкой маршрута стал комплекс третьей очереди цеха по производству горячебрикетированного железа - ЦГБЖ-3, на котором как вы уже догадались, производится горячебрикетированное железо.

Производственная мощность ЦГБЖ-3 составляет 1,8 млн тонн продукции в год, общий объем производственных мощностей компании с учетом 1 и 2 очереди по производству ГБЖ вырос совокупно до 4,5 млн тонн в год.

Комплекс ЦГБЖ-3 занимает территорию в 19 гектаров, и в него входит около 130 объектов: станции грохочения шихты и продукта, тракты и транспортировки окисленных окатышей и готовой продукции, системы обеспыливания нижнего уплотнительного газа и ГБЖ, эстакады трубопроводов, редукционная станция природного газа, станция уплотнительного газа, электрические подстанции, реформер, компрессор технологического газа и другие объекты. Сама шахтная печь высотой 35,4 м, размещается в восьмиярусной металлоконструкции высотой 126 метров.

Также в рамках проекта также была проведена и модернизация сопутствующих производств - обогатительной фабрики и фабрики окомкования, обеспечивших выпуск дополнительных объемов железорудного концентрата (содержанием железа более 70%) и высокоосновных окатышей повышенного качества.

Производство ГБЖ сегодня является самым экологичным способ получения железа. При его производстве не образуются вредные выбросы, связанные с производством кокса, агломерата и чугуна, кроме того нет и твёрдых отходов в виде шлака. По сравнении с производством чугуна энергозатраты на производство ГБЖ ниже на 35%, выбросы парниковых газов - ниже на 60%.
Производится ГБЖ из окатышей при температуре около 900 градусов.

В последующем через пресс-форму или как ее еще называют “брикет-пресс” образуются железные брикеты.

Вот так выглядит товарная продукция:

Ну теперь немного позагораем в горячих цехах! Это Оскольский электрометаллургический комбинат, проще говоря ОЭМК, где плавится сталь.

Близко подходит нельзя, жар чувствуется ощутимо.

На верхних этажах горячий, богатый железом суп помешивают половником.

Занимаются этим жаростойкие сталевары.

Слегка пропустил момент выливания железа в специальную емкость.

А это уже готовый железный суп, пожалуйте к столу, пока не остыл.

И еще один такой же.

А мы идем дальше по цеху. На рисунке можно заметить образцы стальных изделий, которые производит завод.

Производство здесь очень фактурное.

В одном из цехов комбината производят вот такие стальные заготовки. Их длина может достигать от 4 до 12 метров, в зависимости от желания заказчиков. На фото 6-ручьевая машина непрерывного литья заготовок.

Здесь видно, как заготовки режутся на куски.

В следующем цеху горячие заготовки охлаждаются водой до нужной температуры.

А так выглядят уже остывшие, но еще не обработанные изделия.

Это склад, куда помещаются такие полуфабрикаты.

А это многотонные, тяжелые валы для проката железа.

В соседнем цехе ОЭМК обтачивают и полируют стальные пруты разного диаметра, прошедшие прокат в предыдущих цехах. Кстати, этот комбинат - седьмое по величине предприятие в России по производству стали и стальной продукции.

После полировки продукция в соседнем цехе.

Еще один цех, здесь происходит обточка и полировка изделий.

Так они выглядят в необработанном виде.

Складывание полированных прутов воедино.

И складирование с помощью крана.

Основными потребителями металлопродукции ОЭМК на российском рынке являются предприятия автомобильной, машиностроительной, трубной, метизной и подшипниковой промышленности.

Нравятся сложенные аккуратно стальные пруты).

ОЭМК применяет передовые технологии, включая технологию прямого восстановления железа и электродуговой плавки, что обеспечивает производство металла высокого качества, с уменьшенным содержанием примесей.

Металлопродукция ОЭМК экспортируется в Германию, Францию, США, Италию, Норвегию, Турцию, Египет и многие другие страны.

Комбинат производит изделия, используемые ведущими мировыми автомобилестроителями, такими как Peugeot, Mercedes, Ford, Renault, Volkswagen. Из них делают подшипники для этих самых иномарок.

По требованию заказчика на каждое изделие клеится стикер. На стикере проштамповывается номер плавки и код марки стали.

Противоположный конец может маркироваться краской, а к каждому пакету к готовыми изделиями крепятся бирки с номером контракта, страны назначения, марки стали, номера плавки, размера в миллиметрах, наименования поставщика и веса пакета.

Спасибо, что дочитали до конца, надеюсь вам было интересно.
Отдельное спасибо кампании "Металлоинвест" за приглашение!

Жми на кнопку, чтобы подписаться на "Как это сделано"!

Если у вас есть производство или сервис, о котором вы хотите рассказать нашим читателям, пишите Аслану ([email protected] ) и мы сделаем самый лучший репортаж, который увидят не только читатели сообщества, но и сайта Как это сделано

Подписывайтесь также на наши группы в фейсбуке, вконтакте, одноклассниках, в ютюбе и инстаграме , где будут выкладываться самое интересное из сообщества, плюс видео о том, как это сделано, устроено и работает.

Жми на иконку и подписывайся!