Роль анаэробных бактерий в производстве биогаза из отходов. Справка

Экология потребления.Усадьба: Выгодно ли производить биотопливо в домашних условиях в малых количествах в личном подсобном хозяйстве? Если у вас есть несколько металлических бочек и прочего железного хлама, а также бездна свободного времени и вы не знаете, как им распорядиться - да.

Предположим, природного газа в вашей деревне не было и не будет. А даже если есть, он денег стоит. Хотя и на порядок дешевле, чем разорительное отопление электричеством и жидким топливом. Ближайший цех по производству пеллет находится в паре сотен километров, везти накладно. Дрова купить с каждым годом всё сложнее, да и топить ими хлопотно. На этом фоне весьма заманчиво выглядит идея получать дармовой биогаз на собственном подворье из сорняков, куриного помёта, навоза от любимой свинки или содержимого хозяйского нужника. Достаточно лишь смастерить биореактор! По телевизору рассказывают, как экономные немецкие фермеры согревают себя «навозными» ресурсами и никакой «Газпром» им теперь не нужен. Вот уж где справедлива поговорка «с фекалий плёнку снимет». Интернет пестрит статьями и роликами на тему «биогаз из биомасс» и «биогазовая установка своими руками». Но о практическом применении технологии у нас мало что известно: про производство биогаза в домашних условиях говорят все, кому не лень, но конкретные примеры в деревне, так же, как и легендарный Ё-Мобиль на дороге, мало кто видел живьём. Попробуем разобраться, почему это так и каковы перспективы прогрессивных биоэнергетических технологий на селе.

Что такое биогаз + немного истории

Биогаз образуется в результате последовательного трёхступенчатого разложения (гидролиз, кислото- и метанообразование) биомассы различными видами бактерий. Полезная горючая составляющая - метан, может присутствовать также водород.

Процесс бактериального разложения, в результате которого образуется горючий метан

В большей или меньшей степени горючие газы образуются в процессе разложения любых остатков животного и растительного происхождения.

Ориентировочный состав биогаза, конкретные пропорции составляющих зависят от применяемых сырья и технологии

Люди издавна пытаются использовать этот вид природного топлива, в средневековых хрониках содержатся упоминания о том, что жители низменных районов нынешней Германии ещё тысячелетие назад получали биогаз из гниющей растительности, погружая в болотную жижу кожаные мехи. В тёмные средние века и даже просвещённые столетия наиболее талантливые метеористы, благодаря специально подобранной диете умевшие пустить и вовремя поджечь обильный метановый flatus, вызывали неизменный восторг публики на весёлых ярмарочных представлениях. Промышленные биогазовые установки с переменным успехом начали строить с середины XIX века. В СССР в 80-е годы прошлого века была принята, но не реализована госпрограмма по развитию отрасли, хотя с десяток производств всё же запустили. За рубежом технология получения биогаза совершенствуется продвигается относительно активно, общее число работающих установок исчисляется десятками тысяч. В развитых странах (ЕЭС, США, Канада, Австралия) это высокоавтоматизированные крупные комплексы, в развивающихся (Китай, Индия) - полукустарные биогазовые установки для дома и небольшого крестьянского хозяйства.

Процентное соотношение числа биогазовых установок в странах Евросоюза. Отчётливо видно, что технология активно развивается только в Германии, причина - солидные государственные дотации и налоговые льготы

Какое применение находит биогаз

Понятно, что в качестве топлива, раз он горит. Отопление производственных и жилых зданий, генерация электроэнергии, приготовление пищи. Однако не всё так просто, как показывают в роликах, разбросанных по ютюбу. Биогаз должен стабильно гореть в теплогенерирующих установках. Для этого его параметры газовой среды необходимо привести к довольно жёстким стандартам. Содержание метана должно быть не ниже 65% (оптимум 90-95%), водород отсутствовать, водяные пары выведены, углекислый газ удалён, оставшиеся составляющие инертны к высоким температурам.

Использовать биогаз «навозно-животного» происхождения, не освобождённый от зловонных примесей, в жилых домах невозможно.

Нормируемое давление - 12,5 бар, при значении менее 8-10 бар автоматика в современных моделях отопительного оборудования и кухонного оборудования прекращает подачу газа. Очень важно, чтобы характеристики поступающего в теплогенератор газа были стабильными. В случае скачка давления за пределы нормы сработает клапан, включать обратно придётся вручную. Плохо, если используются устаревшие газовые приборы, не оснащённые системой газ-контроля. В лучшем случае может выйти из строя горелка отопительного котла. Худший вариант - газ потухнет, но его поступление не прекратится. А это уже чревато трагедией. Обобщим сказанное: характеристики биогаза необходимо привести к необходимым параметрам, а технику безопасности соблюдать неукоснительно. Упрощённая технологическая цепочка получения биогаза. Важный этап - сепарация и газоотделение

Какое сырьё используют для получения биогаза

Растительное и животное сырьё

  • Растительное сырьё отлично подходит для производства биогаза: из свежей травы можно получить максимальный выход топлива - до 250 м3 на тонну сырья, содержание метана до 70%. Несколько меньше, до 220 м3 можно получить из кукурузного силоса, до 180 м3 из свекольной ботвы. Пригодны любые зелёные растения, хороши водоросли, сено (100 м3 из тонны), но пускать ценные корма на топливо имеет смысл лишь при их явном избытке. Невелик выход метана из жома, образующегося при изготовлении соков, масел и биодизеля, но и материал дармовой. Недостаток растительного сырья - длительный производственный цикл, 1,5-2 месяца. Можно получать биогаз и из целлюлозы, других медленно разлагающихся растительных отходов, но эффективность крайне низкая, метана образуется мало, производственный цикл очень длительный. В заключение скажем, что растительное сырьё обязательно должно быть мелко измельчено.
  • Сырьё животного происхождения: традиционные рога и копыта, отходы молокозаводов, боен и перерабатывающих предприятий также пригодно и тоже в измельчённом виде. Самая богатая «руда» - животные жиры, выход высококачественного биогаза с концентрацией метана до 87% достигает 1500 м3 на тонну. Тем не менее, животное сырьё в дефиците и, как правило, ему находят иное применение.

Горючий газ из экскрементов

  • Навоз дёшев и во многих хозяйствах имеется в достатке, однако выход и качество биогаза значительно ниже, чем из других видов. Коровьи лепёшки и лошадиные яблочки можно использовать в чистом виде, ферментация начинается сразу, выход биогаза 60 м2 на тонну сырья с невысоким содержанием метана (до 60%). Производственный цикл короткий, 10-15 дней. Свиной навоз и куриный помёт токсичны - чтобы полезные бактерии могли развиваться, его смешивают с растительными отходами, силосом. Большую проблему представляют моющие составы, ПАВы, которые применяются при уборке животноводческих помещений. Вкупе с антибиотиками, которые в большом количестве попадают в навоз, они угнетают бактериальную среду и тормозят образование метана. Не применять дезинфицирующих средств вовсе невозможно и агропредприятия, вложившиеся в производство газа из навоза, вынуждены искать компромисс между гигиеной и контролем над заболеваемостью животных с одной стороны и поддержанием продуктивности биореакторов с другой.
  • Человеческие экскременты, совершенно бесплатные, тоже подходят. Но использовать обычные канализационные стоки нерентабельно, слишком мала концентрация фекалий и высока дезинфицирующих средств, ПАВ. Технологи утверждают, что их можно было бы использовать лишь в случае, если в канализацию будут поступать «продукты» только из унитаза при условии, что смыв чаши осуществляется лишь одним литром воды (стандарт 4/8 л). И без моющих средств, естественно.

Дополнительные требования к сырью

Серьёзная проблема, с которой сталкиваются хозяйства, установившие у себя современное оборудование для получения биогаза - сырьё не должно содержать твёрдых включений, случайно попавший в массу камень, гайка, кусок проволоки или доска закупорит трубопровод, выведет из строя дорогостоящий фекальный насос или мешалку. Нужно сказать, что приведенные данные по максимальному выходу газа из сырья соответствуют идеальным лабораторным условиям. Чтобы приблизиться в реальном производстве к этим цифрам, необходимо соблюсти ряд условий: поддерживать необходимую температуру, периодически перемешивать мелко измельчённое сырье, вносить добавки, активизирующие ферментацию и т.д. На кустарной установке, собранной по рекомендациям статей о «получении биогаза своими руками», едва лишь можно достичь 20% от максимального уровня, высокотехнологические установки позволяют добиваться значений в 60-95%.

Достаточно объективные данные по максимальному выходу биогаза для различных типов сырья

Устройство биогазовой установки


Выгодно ли заниматься производством биогаза

Мы уже упоминали, что в развитых странах строят крупные промышленные установки, а в развивающихся главным образом мелкие, для небольшого хозяйства. Объясним, почему так:


Имеет ли смысл производить биотопливо в домашних условиях

Выгодно ли производить биотопливо в домашних условиях в малых количествах в личном подсобном хозяйстве? Если у вас есть несколько металлических бочек и прочего железного хлама, а также бездна свободного времени и вы не знаете, как им распорядиться - да. Но экономия, увы, мизерная. А уж вкладывать деньги в высокотехнологичное оборудование при небольших объёмах поступления сырья и производства метана не имеет смысла ни при каком раскладе.

Очередной ролик отечественного Кулибина

ПОДПИСЫВАЙТЕСЬ на НАШ youtube канал Эконет.ру, что позволяет смотреть онлайн, скачать с ютуб бесплатно видео об оздоровлении, омоложении человека..

Ставьте ЛАЙКИ, делитесь с ДРУЗЬЯМИ!

https://www.youtube.com/channel/UCXd71u0w04qcwk32c8kY2BA/videos

Без перемешивания сырья и активации процесса ферментации выход метана составит не более 20% от возможного. Значит, в лучшем случае с 100 кг (загрузка бункера) отборной травы можно получить 5 м3 газа без учёта сжатия. И будет хорошо, если содержание метана превысит 50% и не факт, что он будет гореть в теплогенераторе. По утверждению автора, сырьё загружается ежедневно, то есть производственный цикл у него - одни сутки. На самом деле необходимое время - 60 суток. Количества полученного изобретателем биогаза, содержащегося в 50-литровом баллоне, который он сумел заполнить, в морозную погоду для отопительного котла мощностью 15 кВт (жилой дом около 150 м2) хватит на 2 минуты.

Тем, кого возможность производства биогаза заинтересовала, рекомендуется внимательно изучить проблему, особенно с финансовой точки зрения, с техническими вопросами обратиться к специалистам, имеющим опыт подобных работ. Весьма ценной будет практическая информация, полученная в тех хозяйствах, где биоэнергетические технологии уже используются какое-то время. опубликовано

Всего в мире в настоящее время используется или разрабатывается около 60-ти разновидностей технологий получения биогаза. Наиболее распространенный метод - анаэробное сбраживание в метантенках, без доступа воздуха, или в анаэробных колоннах. Часть энергии, получаемой в результате утилизации биогаза, направляется на поддержание процесса. В странах с жарким климатом нет необходимости подогревать метантенк. Бактерии перерабатывают биомассу в метан при температуре от 25 до 200°С. Процесс основан на разложении (гниении) под воздействием бактерий, принадлежащих к двум большим семействам: асидогенов и метаногенов, предварительно сортированных ТБО (органические отходы, густая грязь) в металлических емкостях без доступа воздуха при средней температуре около +55°С. Образующийся газ подается под давлением в очистительную систему, а потом выделяется в два компонента СКЦ (метан) и С0 2 (диоксид углерода). Биогаз состоит из 55-75% метана СН4, 25-45% С0 2 , включая небольшие примеси Н 2 , H 2 S и органических веществ. Период образования качественного биогаза составляет 7-15 дней.

Производство биогаза позволяет предотвратить выбросы метана в атмосферу. Метан оказывает влияние (парниковый эффект) в 21 раз более сильное, чем С0 2 , и находится в атмосфере 12 лет. Захват и использование метана - лучший краткосрочный способ предотвращения глобального потепления.

Россия ежегодно накапливает до 300 млн. т в сухом эквиваленте органических отходов: 250 млн. т в сельскохозяйственном производстве, 50 млн. т в виде бытового мусора. Эти отходы являются сырьем для производства биогаза. Потенциальный объем ежегодно получаемого биогаза может составить 90 млрд. м 3 .

Биогаз собирают, предотвращая загрязнение атмосферы, и используют в качестве топлива для производства электроэнергии, тепла или пара, или в качестве автомобильного топлива. В Индии, Вьетнаме, Непале и других странах строят малые (односемейные) биогазовые установки. Получаемый в них газ используется для приготовления пищи. В Китае на конец 1990 г. было произведено около 7 млрд, м 3 биогаза в год. В 2006 г. этот объем увеличился до 15 млрд. м 3 .

Среди промышленно развитых стран ведущее место в производстве и использовании биогаза принадлежит Дании - биогаз занимает до 18% в ее общем энергобалансе. В Западной Европе не менее половины всех птицеферм отапливаются биогазом.

Volvo и Scania производят автобусы с двигателями, работающими на биогазе. Такие автобусы активно используются в городах Швейцарии: Берне, Базеле, Женеве, Люцерне и Лозанне. По прогнозам швейцарской ассоциации газовой индустрии к 2010 г. 10% автотранспорта Швейцарии будет работать на биогазе.

С учетом наших условий метан, выработанный из биогаза, или биогаз в основном его виде может использоваться в виде топлива для малых котельных, автотранспорта и выработки электроэнергии. Рядом с заводом по переработке ТБО планируется строительство модулей - парников для выращивания культур сельского хозяйства, овощей и зелени.

Выделенный метан из биогаза является сырьем для получения многих ценных продуктов химической промышленности - метанола, формальдегида, ацетилена, сероуглерода, хлороформа, синильной кислоты, сажи.

Из 1 тонны твердых и жидких бытовых отходов по технологии анаэробного сбраживания (HSAD) получается 521 м 3 биогаза. Чистый метан имеет теплотворную способность около 35,9 МДж/м 3 при 0°С и 101,3 кПа. 1 млн. британской тепловой единицы Btu (МДж) соответствует 293 кВт/ч.

Рассмотрим пример расчетов по выходу газа в соответствии с американской технологией анаэробного сбраживания HSAD. Имеется 100 тонн муниципальных отходов:

  • 45% отходы для сбраживания (фекальные осадки, домашние отходы, картон)
  • 55% отходы для сортировки (стекло, металл, пластик, дерево, минералы)
  • 45 тонн отходов = 18800 м 3 биогаза (80% возобновляемой нормы)
  • 11300 м 3 метана (60%) или 398 млн. Btu;
  • 5400 м 3 С0 2 (30%).

При 35% эффективности от 60% метана получается 139 миллионов Btu или 40 727 кВт в день.

Из 137 тонн отходов производится:

  • 2525600 тонн компоста в год
  • 22,9 млн. литров метана или 17 тонн вдень (65% от общей массы производимого газа, 30% - С0 2)
  • 810 млн. Btu в день.

Выход биогаза на 1 тонну абсолютно сухого вещества зависит от вида используемого сырья. Экономически наиболее оправдано получение биогаза из отходов животноводческих ферм. Из тонны навоза крупного рогатого скота получается 200-350 м 3 биогаза с содержанием метана 60%, 300-630 м 3 биогаза из различных видов растений с содержанием метана до 70%.

В биогазовых расчетах даже используется понятие «животной единицы», чтобы иметь возможность сравнивать количество биогаза, производимого из навоза разных животных. Одна животная единица производит в день около 0,5 м 3 биогаза. Одной животной единице соответствуют 1 взрослая корова / 5 телят / 6 свиней /250 куриц.

Сырье для переработки в биогаз: отходы мясной промышленности, жидкие городские отходы, отходы сельского хозяйства, отходы древесины, картон, пищевые отходы, органические отходы - трава, солома, листья, сосновые иголки, навоз, фекальные осадки, домашние отходы, картон. Конечный продукт переработки: биогаз, высококачественный компост.

В настоящее время общее количество метана в атмосфере оценивают в пределах 4600-5000 Тг (Тг = 1012 г, или 1 Тг метана соответствует 1012 граммам углекислого газа). Так как метан, безусловно, дает более сильный парниковый эффект, чем углекислый газ, их эмиссии были сравнены путем пересчета действия метана и действия СО? при помощи так называемого эквивалента СО? (одна тонна испускаемого метана эквивалентна 23 тоннам испускаемого СО? в шкале времени - 100 лет). В южном полушарии концентрация метана несколько ниже, чем в северном полушарии. Такое различие обычно связывают с меньшей мощностью источников метана в южном полушарии: считается, что основные источники метана расположены на континентах, а океаны не вносят заметного вклада в глобальный поток метана. Продолжительность жизни метана в атмосфере 8-12 лет.

Метан попадает в атмосферу как из естественных, так и из антропогенных источников. Мощность антропогенных источников в настоящее время существенно превышает мощность естественных. К естественным источникам метана относятся болота, тундра, водоемы, насекомые (главным образом термиты), метангидраты, геохимические процессы (извержения вулканов); к антропогенным - рисовые поля, шахты, животные, потери при добыче газа и нефти, горение биомассы, свалки.

Интенсивность выделения метана из болот меняется в широких пределах. Эмиссия метана от западно-сибирских болот, которые являются достаточно типичным представителем северных болот, определенная с применением методов газовой хроматографии, составляет примерно 9 мг метана в ч/м 2 . В среднем эмиссия метана из сибирских болот может достигать 20 Тг/год, что довольно много в сопоставлении с общим потоком метана от болот (50-70 Тг).

Количество крупного рогатого скота в мире - около 1,5 млрд, голов. Одна корова производит в сутки около 250 л чистого метана. Этого количества метана хватит, чтобы вскипятить 20 л воды. В развитых странах на свалки вывозится примерно 1,8 кг мусора в день в расчете на одного человека, в России 0,6 кг соответственно. Примерно 10% этой массы может конвертироваться в метан. Следовательно, в России производится 60 г метана в сутки в расчете на одного человека.

Выше был приведен пример американской технологии анаэробного сбраживания, дающей хорошие результаты по выходу биогаза. Отечественный опыт показывает, что в среднем при разложении одной тонны ТБО может образовываться 100-200 м 3 биогаза. В зависимости от содержания метана низшая теплота сгорания свалочного биогаза составляет 18-24 МДж/м 3 (примерно половину теплотворной способности природного газа).

Ежегодная эмиссия метана со свалок земного шара сопоставима с мощностью таких общеизвестных источников метана, как болота, угольные шахты и т. д. Сегодня остро стоит проблема стабилизации концентрации в атмосфере этого газа, одного из основных планетарных источников парникового эффекта. Поэтому утилизация биогаза бытовых отходов приобретает важнейшее значение для снижения антропогенной эмиссии метана. Кроме того, метан является причиной самовозгорания свалочных отложений, так как при его взаимодействии с воздухом создаются горючие и взрывоопасные смеси, что приводит к сильному загрязнению атмосферы токсичными веществами.

Так как процесс разложения отходов продолжается многие десятки лет, полигон можно рассматривать как стабильный источник биогаза. Эмиссия биогаза с полигона в зависимости от объема свалочных масс может составлять от нескольких десятков л/с (малые полигоны) до нескольких м 3 /с (крупные полигоны). Масштабы и стабильность образования, расположение на урбанизированных территориях и низкая стоимость добычи делают биогаз, получаемый на полигонах ТБО, одним из перспективных источников энергии для местных нужд. Как было показано выше, утилизация биогаза на полигонах ТБО требует инженерного обустройства полигона (создание изолирующего экрана, газовых скважин, газосборной системы и др.). При этом решается основная задача охраны окружающей среды в урбанизированных территориях - обеспечение чистоты атмосферного воздуха и предотвращение загрязнения грунтовых вод.

Образующийся на полигонах биогаз с начала 1980-х гг. интенсивно добывается во многих странах. В настоящее время общее количество используемого биогаза составляет примерно 1,2 млрд. м 3 /год, что эквивалентно 429 тыс. т метана, или 1% его глобальной эмиссии.

В Германии на 409 крупных полигонах городского мусора имеются сборные пункты биогаза, образующегося при разложении органических компонентов мусора. В среднем на полигонах Германии из 1 т мусора вырабатывается около 100 м 3 биогаза. При общем объеме выделения биогаза с полигонов в размере 4 млрд. м 3 /год (что эквивалентно 2 млрд, м 3 природного газа), его полезное потребление составляет около 400 млн. м 3 /год. Биогаз после его очистки используют для получения электрической и тепловой энергии, расходуемой для промышленных целей и в системах отопления. Количество биогаза, генерируемого на свалках, колеблется от 10 до 1200 м 3 /ч. Мощность установок для производства электроэнергии из биогаза составляет от десятка кВт до нескольких тыс. кВт, что позволяет обеспечивать энергией от нескольких домов до небольшого поселка. Нередко биогаз используется в качестве топлива в энергетических установках с двигателями внутреннего сгорания (ДВС). Себестоимость полученной энергии на установках с ДВС примерно в 2-2,5 раза ниже тарифов на электроэнергию для населения.

В США в настоящее время объем добычи биогаза составляет 500 млн. м 3 /год. Значительная часть биогаза поступает на электростанции, работающие на газообразном топливе. Суммарная электрическая мощность установок, работающих на биогазе, составляет около 200 МВт. Кроме того, все чаще осуществляется подача биогаза в коммунальные сети газоснабжения.

В Великобритании добывается около 200 млн. м 3 /год биогаза. Суммарная мощность Био- ЭС Великобритании составляет около 80 МВт.

Во Франции добывается около 40 млн. м 3 /год биогаза. На одной из свалок вблизи Парижа была построена БиоТЭС, использующая биогаз, эмиссия которого составляет 1500 м 3 /сут.

На Украине в городах ежегодно образуется около 10 млн. т бытовых отходов. Более 90% ТБО вывозится на 655 полигонов и свалок, из которых 140 являются пригодными для добычи и использования свалочного газа. Потенциал свалочного газа составляет около 400 млн. м 3 /год.

Утилизация биогаза весьма перспективна и для России, так как около 97% из 30 млн. т ежегодно образующихся отходов захоранивается на полигонах и организованных свалках. В России эксплуатируется более 1300 полигонов ТБО. Ежегодная эмиссия метана со свалок России оценивается в размере 1,1 млрд, м 3 (788 тыс. т), что почти в два раза превышает современное его потребление в мире.

В настоящее время в России свалочный биогаз практически не используется. В рамках российско-голландского проекта в период 1995-1997 гг. на полигонах «Дашковка» и «Каргаши- но», расположенных на территории Московской области, были построены две пилотные установки по добыче и утилизации биогаза. Полученные результаты показывают, что на среднем полигоне Московской области образуется до 600-800 м 3 /ч биогаза, что позволяет вырабатывать электроэнергию в размере 3500-4400 МВт ч/год. Технико-экономические расчеты, выполненные на основе опытных данных, подтвердили эффективность добычи свалочного метана в России, где могут быть осуществлены сотни экономически выгодных проектов.

В Санкт-Петербурге ежегодно образуется около 5 млн. кубометров ТБО, из которых около 80% захоранивается на трех действующих полигонах. Наиболее предпочтительным для утилизации биогаза является полигон ПТО-1 «Волхонский», один из крупнейших в России. На этом полигоне преимущественно захораниваются бытовые отходы, его емкость практически исчерпана, планируется проведение рекультивационных работ, которые можно совместить с созданием системы биогаза. Расчеты показали, что ожидаемой эмиссии метана будет достаточно для работы тепловой электростанции мощностью 2000 кВт в течение 20-25 лет. Кроме того, на территории Ленинградской области имеется 55 организованных свалок, где ежегодно размещается около 1 млн. м 3 ТБО. Несмотря на сравнительно небольшие объемы захоронения отходов, получение биогаза на ряде свалок может оказаться рентабельным из-за высокой стоимости топлива.

Рис. 72.

Анаэробный распад органических веществ на мусорных свалках происходит под действием метаногенной бактерии и приводит к выбросу метана, составляющему 5-20% от общей глобальной эмиссии этого газа в атмосферу.

Как уже указывалось, образование газов на полигонах (свалках) бытовых отходов связано с протеканием анаэробных микробиологических реакций с органическими компонентами бытовых отходов. Эти газы содержат преимущественно метан, диоксид углерода и азот. Кроме того, образуются дурно пахнущие газы - сероводород (H 2 S), меркаптаны (R-SH), альдегиды (R-CHO) в различной концентрации. Газовый состав зависит от длительности хранения и фазы брожения. Аэробная фаза протекает в течение нескольких недель, а анаэробное кислое брожение (гниение) может продолжаться в течение нескольких лет. На рис. 72 представлены отдельные фазы брожения. Удельное выделение газов на полигонах ФРГ оценивается в 60-180 м 3 /т мусора .


Рис. 73. Одна из схем процесса окисления органических отходов

Биогаз - газ, получаемый метановым брожением биомассы. Разложение биомассы происходит под воздействием трех видов бактерий.

В цепочке питания последующие бактерии питаются продуктами жизнедеятельности предыдущих.
Первый вид - бактерии гидролизные, второй - кислотообразующие, третий - метанообразующие.
В производстве биогаза участвуют не только бактерии класса метаногенов, а все три вида. В процессе брожения из биоотходов вырабатывается биогаз. Этот газ может использоваться как обычный природный газ - для обогрева, выработки электроэнергии. Его можно сжимать, использовать для заправки автомобиля, накапливать, перекачивать. По сути, как хозяин и полноправный владелец вы получаете собственную газовую скважину и доходы от нее. Регистрировать собственную установку пока еще нигде не нужно.

Состав и качество биогаза

50-87% метана, 13-50% СO2, незначительные примеси Н2 и H2S. После очистки биогаза от СO2 получается биометан; это - полный аналог природного газа, отличие только в происхождении.
Поскольку лишь метан поставляет энергию из биогаза, целесообразно для описания качества газа, выхода газа и количества газа все относить к метану, с его нормируемыми показателями.

Объем газов зависит от температуры и давления. Высокие температуры приводят к растяжению газа и к уменьшаемому вместе с объемом уровню калорийности, и наоборот. При возрастании влажности калорийность газа также снижается. Чтобы выходы газа можно было сравнить между собой, необходимо их соотносить с нормальным состоянием (температура 0 С, атмосферное давление 1 бар, относительная влажность газа 0%). В целом данные о производстве газа выражают в литрах (л) или кубометрах метана на килограмм органического сухого вещества (оСВ); это намного точнее и красноречивее, нежели данные в кубических метрах биогаза в кубометрах свежего субстрата.

Сырье для получения биогаза

Перечень органических отходов, пригодных для производства биогаза: навоз, птичий помет, зерновая и меласная послеспиртовая барда, пивная дробина, свекольный жом, фекальные осадки, отходы рыбного и забойного цехов (кровь, жир, кишки, каныга), трава, бытовые отходы, отходы молокозаводов - соленая и сладкая молочная сыворотка, отходы производства биодизеля - технический глицерин от производства биодизеля из рапса, отходы от производства соков - жом фруктовый, ягодный, овощной, виноградная выжимка, водоросли, отходы производства крахмала и патоки - мезга и сироп, отходы переработки картофеля, производства чипсов - очистки, шкурки, гнилые клубни, кофейная пульпа.

Расчет полезного биогаза в фермерском хозяйстве

Выход биогаза зависит от содержания сухого вещества и вида используемого сырья. Из тонны навоза крупного рогатого скота получается 50-65 м3 биогаза с содержанием метана 60%, 150-500 м3 биогаза из различных видов растений с содержанием метана до 70%. Максимальное количество биогаза - 1300 м3 с содержанием метана до 87% - можно получить из жира.
Различают теоретический (физически возможный) и технически реализуемый выход газа. В 1950-1970-х годах технически возможный выход газа составлял всего 20-30% от теоретического. Сегодня применение энзимов, бустеров для искусственной деградации сырья (ультразвуковых или жидкостных кавитаторов) и других приспособлений позволяет увеличивать выход биогаза на обычной установке с 60% до 95%.

В биогазовых расчетах используется понятие сухого вещества (СВ или английское TS) или сухого остатка (СО). Сама по себе вода, содержащаяся в биомассе, не дает газа.
На практике из 1 кг сухого вещества получают от 300 до 500 л биогаза.

Чтобы посчитать выход биогаза из конкретного сырья, необходимо провести лабораторные испытания или посмотреть справочные данные, а затем определить содержание жиров, белков и углеводов. При определении последних важно узнать процентное содержание, быстро разлагаемых (фруктоза, сахар, сахароза, крахмал) и трудноразлагаемых веществ (целлюлоза, гемицеллюлоза, лигнин).

Определив содержание веществ, можно вычислить выход газа для каждого вещества по отдельности и затем сложить. Когда биогаз ассоциировался с навозом (на селе такая ситуация сохранилась и сегодня - спрашивал в таежном районном центре, Верховажье Вологодской области), применяли понятие «животной единицы». Сегодня, когда биогаз научились получать из произвольного органического сырья, это понятие отошло и перестало использоваться.

А ведь, кроме отходов, биогаз можно производить из специально выращенных энергетических культур, к примеру из силосной кукурузы или сильфия, а также водорослей. Выход газа может достигать до 500 м3 из 1 т.

Свалочный газ - одна из разновидностей биогаза. Получается на свалках из муниципальных бытовых отходов.

Экологический аспект в использовании биогаза

Производство биогаза позволяет предотвратить выбросы метана в атмосферу. Метан оказывает влияние на парниковый эффект в 21 раз сильнее, чем смесь СO2, и находится в атмосфере до 12 лет. Захват и ограничение распространения метана - лучший краткосрочный способ предотвращения глобального потепления. Вот где на стыке исследований выявляется еще одна, мало исследования пока область науки.

Переработанный навоз, барда и другие отходы применяются в качестве удобрения в сельском хозяйстве. Это позволяет снизить применение химических удобрений, сокращается нагрузка на грунтовые воды.

Производство биогаза

Различают промышленные и кустарные установки.
Промышленные установки отличаются от кустарных наличием механизации, систем подогрева, гомогенизации, автоматики. Наиболее распространенный промышленный метод - анаэробное сбраживание в метантенках.

Надежная биогазовая установка должна иметь необходимые части:

Емкость гомогенизации;
загрузчик твердого (жидкого) сырья;
непосредственно реактор;
мешалки;
газгольдер;
система смешивания воды и отопления;
газовая система;
насосная станция;
сепаратор;
приборы контроля;
система безопасности.

Особенности установки по производству биогаза

В промышленной установке отходы (сырье) периодически подаются с помощью насосной станции или загрузчика в реактор. Реактор представляет собой подогреваемый и утепленный железобетонный резервуар, оборудованный миксерами.

В реакторе «живут» полезные бактерии, которые питаются отходами. Продуктом жизнедеятельности бактерий является биогаз. Для поддержания жизни бактерий требуется подача корма - отходов, подогрев до 35 °С и периодическое перемешивание. Образующийся биогаз скапливается в хранилище (газгольдере), затем проходит систему очистки и подается к потребителям (котел или электрогенератор). Реактор работает без доступа воздуха, практически герметичен и неопасен.

Для сбраживания некоторых видов сырья в чистом виде требуется особая двухстадийная технология.

К примеру, птичий помет, спиртовая барда не перерабатываются в биогаз в обычном реакторе. Для переработки такого сырья необходим дополнительно реактор гидролиза. Он позволяет контролировать уровень кислотности, таким образом бактерии не погибают из-за повышения содержания кислот или щелочей.

Знаковые факторы, влияющие на процесс брожения:

Температура;
влажность среды;
уровень рН;
соотношение С: N: Р;
площадь поверхности частиц сырья;
частота подачи субстрата;
замедляющие реакцию вещества;
стимулирующие добавки.

Применение биогаза

Биогаз используют в качестве топлива для производства электроэнергии, тепла или пара или в качестве автомобильного топлива. Биогазовые установки могут использоваться как очистные сооружения на фермах, птицефабриках, спиртовых заводах, сахарных заводах, мясокомбинатах и как частный случай могут заменить даже ветеринарно-санитарный завод, где падаль может утилизироваться в биогаз вместо производства мясокостной муки.

Современный мир построен на все увеличивающемся потреблении, поэтому особенно быстро истощаются минеральные и сырьевые ресурсы. В то же время на многочисленных животноводческих фермах ежегодно накапливаются миллионы тонн зловонного навоза, и тратятся немалые средства для его утилизации. Люди также не отстают в производстве биологических отходов. К счастью, разработана технология, позволяющая одновременно решать эти проблемы: используя биоотходы (прежде всего, навоз) в качестве сырья, получать экологически чистое возобновляемое топливо – биогаз. Применение таких новаторских технологий породило новую перспективную отрасль – биоэнергетику.

Что такое биогаз

Биогазом называют летучее газообразное вещество, не имеющее цвета, совсем без запаха. Он состоит на 50-70 процентов из метана, до 30 процентов его составляет углекислый газ СО2 и еще 1-2 процента – газообразные вещества – примеси (при очистке от них получается чистейший биометан).

Качественные физико-химические показатели этого вещества приближаются к обычному высококачественному природному газу. По исследованиям ученых, у биогаза очень высокие теплотворные свойства: так, тепло, выделяемое при сжигании одного кубометра этого природного топлива, равнозначно теплу от полутора килограмм каменного угля.

Выделение биогаза происходит благодаря жизнедеятельности особого вида бактерий – анаэробных, при этом мезофильные бактерии активизируются при прогревании среды до 30-40 градусов Цельсия, а термофильные размножаются при более высокой температуре – до +50 градусов.

Под действием их ферментов органическое сырье разлагается с выделением биологического газа.

Сырье для биогаза

Не любые органические отходы подходят для переработки на биогаз. Например, помет от птицефабрик и свиноферм в чистом виде использовать категорически нельзя, потому что у них высок уровень токсичности. Для получения из них биогаза в такие отходы необходимо добавлять разбавляющие вещества: силосовую массу, зеленую травяную массу, а также навоз из-под коров. Последний компонент – самое подходящее сырье для получения экологически чистого топлива, поскольку коровы питаются только растительной пищей. Однако и его надо контролировать на предмет содержания тяжелометаллических примесей, химических составляющих, поверхностно-активных веществ, которых в сырье не должно быть в принципе. Очень важный пункт – контроль на антибиотики и дезинфицирующие вещества. Наличие их в навозе способно препятствовать процессу разложения сырьевой массы и образования летучего газа.

Дополнительная информация. Совсем обойтись без дезинфицирующих средств невозможно, потому что иначе на биомассе под воздействием высоких температур начинает образовываться плесень. Также следует следить и вовремя очищать навозные массы от механических загрязнений (гвозди, болты, камни и т.п.), которые могут быстро испортить биогазовое оборудование. Влажность сырья, идущего для получения биогаза, должна составлять не менее 80-90%.

Механизм образования газа

Для того чтобы в процессе безвоздушного брожения (его по-научному называют анаэробной ферментацией) из органического сырья начал выделяется биогаз, необходимы соответствующие условия: герметичная емкость и повышенная температура. Если все сделано правильно, продуцирующийся газ поднимается наверх, откуда его выбирают для использования, а те твердые частицы, что остаются, представляют собой отличное биоорганическое сельскохозяйственное удобрение, богатое азотом и фосфором, но освобожденное от вредных микроорганизмов. Для правильного и полного протекания процессов очень важен температурный режим.

Полный цикл преобразования навоза в экологическое топливо составляет от 12 дней до месяца, это зависит от состава сырья. С одного литра полезного объема реактора получается около двух литров биогаза. Если применять более совершенные модернизированные установки, то процесс производства биотоплива убыстряется до 3 суток, а выработка биогаза повышается до 4,5- 5 литров.

Люди начали изучать и использовать технологию добычи биотоплива из органических природных источников еще с конца XVIII века, а в бывшем СССР первое устройство по получению биогаза было разработано еще в 40-е годы прошлого столетия. В наше время эти технологии приобретают все большее значение и популярность.

Преимущества и недостатки биогаза

Биогаз как источник энергии имеет неоспоримые плюсы:

  • он служит улучшению экологической обстановки в тех местностях, где широко применяется, поскольку наравне с сокращением использования загрязняющего природу топлива происходит очень эффективное уничтожение биоотходов и обеззараживание стоков, т.е. биогазовое оборудование выполняет роль очистительной станции;
  • сырье для производства этого органического топлива является возобновляемым и практически бесплатным – пока животные на фермерских хозяйствах получают питание, они будут производить биомассу, а, значит, и топливо для биогазовых установок;
  • приобретение и использование оборудования экономически выгодно – однажды купленная установка для получения биогаза больше не потребует никаких вложений, а обслуживается она просто и дешево; так, биогазовая установка для использования в фермерском хозяйстве начинает окупаться уже через три года после запуска; отсутствует необходимость сооружать инженерные коммуникации и линии передачи энергии, затраты на запуск биостанции снижаются на 20 процентов;
  • отпадает необходимость в подведении таких инженерных коммуникаций, как линии электропередач и газопровод;
  • производство биогаза на станции с использованием местного органического сырья – безотходное предприятие, в противовес предприятиям на традиционных энергоносителях (газопроводы, котельные и т.п.), отходы не загрязняют экосреду, не требуют места для своего хранения;
  • при использовании биогаза в атмосферу выделяется некоторое количество углекислого газа, а также серы, однако, эти количества минимальны по сравнению с тем же природным газом и усваиваются зелеными насаждениями при дыхании, поэтому вклад биоэтанола в парниковый эффект минимален;
  • по сравнению с другими альтернативными источниками энергии, выработка биогаза всегда стабильна, деятельностью и производительностью установок по его производству человек может управлять (в отличие, например, от солнечных батарей), собирая несколько установок в одну или, наоборот, дробя на отдельные участки для снижения риска аварии;
  • в выхлопных газах при использовании биотоплива содержание оксида углерода снижается на 25 процентов, а оксидов азота – на 15;
  • помимо навоза, можно использовать и некоторые виды растений для получения биомассы на топливо, например, сорго поможет улучшить состояние почв;
  • при добавлении биоэтанола в бензин его октановое число увеличивается, а само топливо становится более детонационно- стойким, его температура самовоспламенения значительно снижается.

Биогаз не идеальное топливо, он и технология его получения также не лишены недостатков:

  • скорость переработки органического сырья в оборудовании для производства биогаза – слабое место в технологии по сравнению с традиционными источниками получения энергии;
  • у биоэтанола меньшая теплота сгорания, чем у топлива из нефти – на 30 процентов меньше выделяется энергии;
  • процесс довольно неустойчив, для его поддержания требуется большое количество ферментов определенного качества (например, изменение в рационе коров очень сильно влияет на качество навозного сырья);
  • недобросовестные производители биомассы для станций переработки могут значительно истощать почвы повышенными засевами, это нарушает экологическое равновесие территории;
  • трубы и емкости с биогазом могут разгерметизироваться, что приведет к резкому снижению качества биотоплива.

Где применяется биогаз

Прежде всего, это экологическое биотопливо идет на удовлетворение бытовых потребностей населения, как замена природному газу, для обогрева и приготовления пищи. Предприятия могут использовать биогаз для запуска замкнутого цикла изготовления продукции: особенно эффективно его применение в газовых турбинах. При грамотной наладке и полном совмещении такой турбины с установкой по получению биотоплива его стоимость конкурирует с самой дешевой атомной энергией.

Эффективность использования биогаза очень легко подсчитать. Например, от одной единицы крупного рогатого скота можно получить до 40 килограмм навоза, из которого производится полтора кубометра биогаза, достаточного для выработки 3 киловатт/часов электричества.

Определив потребности хозяйства в электроэнергии, можно определить, какой вид установки для получения биогаза использовать. При небольшом поголовье коров лучше всего биогаз в домашних условиях добывать с помощью простейшей биогазовой установки малой мощности.

Если же хозяйство очень крупное, и на нем постоянно образуется большое количество биоотходов, выгодно смонтировать автоматизированную биогазовую систему промышленного типа.

Обратите внимание! При проектировании и наладке тут потребуется помощь квалифицированных специалистов.

Конструкция биогазовой установки

Любая биоустановка состоит из следующих основных частей:

  • биореактор, где происходит биоразложение навозной смеси;
  • система подачи органического топлива;
  • агрегат для размешивания биологических масс;
  • аппараты для создания и поддержания нужного уровня температуры;
  • цистерны для помещения в них полученного биогаза (газгольдеры);

  • емкости для помещения туда образующихся твердых фракций.

Это полный список элементов для промышленных автоматизированных установок, тогда как биогазовая установка для частного дома гораздо более проще сконструирована.

Биореактор должен быть полностью герметичным, т.е. доступ кислорода недопустим. Это может быть емкость из металла в виде цилиндра, установленная на поверхности почвы, хорошо для этих целей подходят бывшие цистерны от топлива емкостью по 50 кубометров. Готовые разборные биореакторы быстро монтируются / демонтируются и легко перемещаются на новое место.

Если предполагается небольшая биогазовая станция, то целесообразно размещать реактор под землей и выполнять его в виде кирпичного или бетонного резервуара, а также металлических или ПВХ бочек. Можно помещать такой биоэнергетический реактор в помещение, однако необходимо обеспечить постоянное вентилирование воздуха.

Бункеры для подготовки биологического сырья – необходимый элемент системы, потому что перед тем, как попасть в реактор, его надо подготовить: измельчить на частицы до 0,7 миллиметра и пропитать водой, чтобы довести влажность сырья до 90 процентов.

Системы подачи сырья состоят из сырьевого приемника, водопровода и насоса для подачи подготовленной массы в реактор.

Если биореактор выполнен в подземном исполнении, емкость для сырья располагают на поверхности, чтобы подготовленный субстрат самостоятельно под действием силы тяжести тек в реактор. Возможно также расположить сырьевой приемник в верхней части бункера, тогда необходимо использование насоса.

Отверстие для вывода отходов располагают ближе к днищу, напротив входа для сырья. Приемник для твердых фракций выполняют в виде прямоугольного ящика, куда ведет выходная трубка. При поступлении в биореактор новой порции подготовленного био-субстрата, такая же по объему партия твердых отходов подается в приемник. В дальнейшем они используются в хозяйствах в качестве отличных биоудобрений.

Полученный биогаз хранится в газгольдерах, которые помещаются, как правило, сверху реактора и имеют конусообразную или куполообразную форму. Изготавливаются газгольдеры из железа и прокрашиваются масляной краской в несколько слоев (это помогает избежать коррозийного разрушения). В больших промышленных биоустановках емкости для биогаза выполняются в виде отдельно стоящих цистерн, соединенных с реактором.

Для придания полученному газу горючих свойств необходимо избавить его от водяных паров. Производится провод биотоплива по трубе через водяную емкость (гидрозатвор), после чего его можно подавать по пластиковым трубам непосредственно для потребления.

Иногда можно встретить особенные газгольдеры мешкообразного вида из ПВХ. Их располагают в непосредственной близости от установки. По мере заполнения биогазом мешки раскрываются, их объем увеличивается настолько, чтобы принять весь произведенный газ.

Для эффективного протекания процессов биоброжения необходимо постоянное перемешивание субстрата. Для предотвращения образования корки на поверхности биомассы и замедления процессов брожения необходимо постоянно активно ее перемешивать. Для этого сбоку реактора монтируются погружные или наклонные размешиватели в виде миксера для механического перемешивания массы. Для небольших станций они ручные, для промышленных – с автоматическим управлением.

Необходимую для осуществления жизнедеятельности анаэробных бактерий температуру поддерживают с помощью автоматизированных обогревательных систем (для стационарных реакторов), они начинают подогрев при снижении тепла ниже нормы и автоматически выключаются при достижении нормальной температуры. Также можно использовать котельные установки, электрообогреватели или вмонтировать в днище емкости с сырьем специальный нагреватель. Одновременно необходимо снизить потери тепла от биореактора, для этого его укутывают слоем стекловаты или проводят другую теплоизоляцию, например, из пенополистирола.

Биогаз своими руками

Для частных домов применение биогаза сейчас очень актуально – из практически бесплатного навоза можно получить газ для бытовых нужд и обогрева дома и фермы. Собственная биогазовая установка – это гарантия от отключений электричества и подорожания газа, а также отличный способ утилизировать биоотходы, а также ненужную бумагу.

Для строительства в первый раз логичнее всего использовать простые схемы, такие конструкции будут более надежными и прослужат дольше. В дальнейшем установку можно будет дополнить более сложными деталями. Для дома площадью в 50 квадратов достаточное количество газа получается при объеме емкости для ферментирования в 5 кубометров. Для обеспечения постоянного температурного режима, необходимого для правильного брожения, можно использовать трубу отопления.

На первом этапе строительства роют траншею для биореактора, стенки которой должны быть укреплены и герметизированы с помощью пластика, бетонной смеси или же кольцами из полимеров (желательно наличие в них глухого дна – периодически по мере пользования их придется заменять).

Второй этап заключается в монтаже газового дренирования в виде полимерных труб с многочисленными отверстиями. При установке следует учитывать, что верхушки труб должны превышать планируемую глубину наполнения реактора. Диаметр выходных труб должен быть не больше 7-8 сантиметров.

Следующий этап – изоляция. После этого можно заполнять реактор подготовленным субстратом, после чего он укутывается пленкой для увеличения давления.

На четвертом этапе монтируют купола и отводную трубу, которая ставится в самой высокой точке купола и соединяет реактор с газгольдером. Газгольдер можно обложить кирпичом, поверх монтируется сетка из нержавеющей стали и покрывается штукатуркой.

В верхней части газгольдера помещают люк, который закрывается герметично, из него выводят газовую трубу с клапаном для уравнивания давления.

Важно! Получаемый газ должен отводиться и потребляться постоянно, поскольку длительное его хранение в свободной части биореактора может спровоцировать взрыв от повышенного давления. Необходимо предусмотреть гидрозатвор для того, чтобы биогаз не смешивался с воздухом.

Для разогрева биомассы можно установить змеевик, идущий от отопительной системы дома, – это экономически гораздо выгоднее, чем применение электрообогревателей. Внешнее обогревание можно предусмотреть с помощью пара, это исключит перегрев сырья выше нормы.

В целом биогазовая установка своими руками – не такое сложное сооружение, но при ее обустройстве необходимо обращать внимание на самые мелкие детали, во избежание пожаров и разрушений.

Дополнительная информация. Строительство даже самой простой биоустановки должно быть оформлено соответствующими документами, необходимо иметь технологическую схему и карту монтажа оборудования, нужно получить одобрение Санэпидемстанции, пожарной и газовой служб.

В наше время использование альтернативных источников энергии набирает обороты. Среди них очень перспективной является подотрасль биоэнергетики – получение биогаза из органических отходов типа навоза и силоса. Станции производства биогаза (промышленные или маленькие домашние) способны решить проблемы утилизации отходов, получения экологического топлива и тепла, а также качественных сельскохозяйственных удобрений.

Видео

Доброго времени суток всем! Этот пост продолжает тему альтернативной энергетики для вашего. В нем я вам расскажу о биогазе и его использовании для обогрева жилища и приготовления пищи. Наиболее эта тема интересна фермерам, у которых есть доступ к разнообразному сырью для получения этого вида топлива. Давайте для начала разберемся в том, что такое биогаз и откуда он берется.

Откуда берется биогаз и из чего он состоит?

Биогаз — горючий газ, возникающий как продукт жизнедеятельности микроорганизмов в питательной среде. Этой питательной средой может быть навоз или силос, который закладывается в специальный бункер. В этом бункере, который называется реактором, и происходит образование биогаза. Внутри реактор будет устроен следующим образом:

Для ускорения процесса брожения биомассы необходим ее подогрев. Для этого может быть использован ТЭН или теплообменник, подключенный к любому отопительному котлу. Нельзя забывать и о хорошей теплоизоляции, чтобы избежать лишних затрат энергии на подогрев. Кроме подогрева, бродящую массу необходимо перемешивать. Без этого КПД установки может значительно снижаться. Перемешивание может быть ручным или механическим. Тут все зависит от бюджета или имеющихся в наличии технических средств. Самое главное в реакторе — это объем! Маленький реактор просто физически не способен выдать большое количество газа.

Химический состав газа сильно зависит от того какие процессы протекают в реакторе. Чаще всего там происходит процесс метанового брожения, в результате которого образуется газ с большим процентным содержанием метана. Но вместо метанового брожения вполне может происходить процесс с образованием водорода. Но по моему мнению, для обычного потребителя водород не нужен, а может даже и опасен. Вспомните хотя бы гибель дирижабля Гинденбург. Теперь давайте разберемся из чего можно получать биогаз.

Из чего можно получать биогаз?

Газ можно получать из различных видов биомассы. Давайте перечислю их в виде списка:

  • Отходы пищевых производств — это могут быть отходы от забоя скота или молочного производства. Подойдут отходы от производства подсолнечного или хлопкового масла. Это далеко не полный список, но для передачи сути достаточно. Данный вид сырья дает наибольшее содержание метана в газе (доходит до 85%).
  • Сельскохозяйственные культуры — для получения газа в некоторых случаях выращивают специальные виды растений. Например, для этого подойдет силосная кукуруза или морские водоросли. Процент содержания метана в газе держится в районе 70%.
  • Навоз — чаще всего применяется на больших животноводческих комплексах. Процентное содержание метана в газе, при использовании навоза в качестве сырья, обычно не превышает 60%, а все остальное это будет двуокись углерода и совсем немножко сероводород и аммиак.

Структурная схема установки для биогаза.

Для того, чтобы наилучшим образом понимать как работает установка для получения биогаза давайте рассмотрим следующий рисунок:


Устройство биореактора было рассмотрено выше, поэтому о нем говорить не будем. Рассмотрим другие составные части установки:

  • Приемник отходов — это некая емкость, в которую попадает сырье на первом этапе. В ней сырье может смешиваться с водой и измельчаться.
  • Насос (после приемника отходов) — фекальный насос, при помощи которого биомасса перекачивается внутрь реактора.
  • Котел — отопительный котел на любом топливе, предназначенный для обогрева биомассы внутри реактора.
  • Насос (рядом с котлом) — циркуляционный насос.
  • «Удобрения» — емкость, в которую попадает перебродивший ил. Он, как понятно, из контекста может использоваться как удобрение.
  • Фильтр — устройство, в котором происходит доведение биогаза до кондиции. В фильтре убираются лишние примеси газов и влаги.
  • Компрессор — осуществляет сжатие газа.
  • Газовое хранилище — герметичная цистерна, в которой готовый к применению газ может хранится сколь угодно долго.

Биогаз для частного дома.

Многие владельцы небольших ферм задумываются об использовании биогаза для внутренних нужд. Но разузнав по-подробнее о том, как все это работает большинство оставляет эту затею. Связано это с тем, что оборудование для переработки навоза или силоса стоит огромных денег, а выход газа (в зависимости от сырья)может получиться небольшим. Это в свою очередь делает установку оборудования невыгодным. Обычно, для частных домов фермеров устанавливают примитивные установки, работающие на навозе. Они, чаще всего, способны обеспечить газом только кухню и маломощный настенный газовый котел. При этом на сам технологический процесс придется затратить немало энергии — на подогрев, перекачку, работу компрессора. Дорогостоящие фильтра тоже нельзя исключать из поля зрения.


В общем, мораль тут такая — чем больше сама установка, тем выгоднее ее работа. А для домашних условий это практически всегда невыполнимо. Но это не значит, что домашних установок никто не делает. Предлагаю вам посмотреть следующее видео, чтобы увидеть как это выглядит из подручных материалов:

Резюме.

Биогаз — отличный способ полезной переработки органических отходов. На выходе получается топливо и полезное удобрение в виде перебродившего ила. Данная технология работает тем эффективней, чем больший объем сырья перерабатывается. Современные технологии позволяют серьезно увеличить выработку газа при помощи применения специальных катализаторов и микроорганизмов. Главным минусом всего этого является высокая цена одного кубометра. Для обычных людей чаще всего будет гораздо дешевле покупать газ в баллонах, чем делать установку по переработке отходов. Но, конечно, из всех правил есть исключения, поэтому перед тем, как принять решение о переходе на биогаз стоит посчитать цену кубометра и сроки окупаемости. На этом пока все, пишите вопросы в комментариях