Что такое волна в море. Морские волны

Многие природные явления человек воспринимает как сами собой разумеющиеся. Мы привыкли к лету, осени, зиме, дождю, снегу, волнам и не задумываемся о причинах. И все же, почему в море образуются волны? Почему на водной глади появляется рябь даже в полный штиль?

Происхождение

Есть несколько теорий, объясняющих возникновение морских и океанических волн. Они образуются из-за:

  • перепадов атмосферного давления;
  • приливов и отливов;
  • подводных землетрясений и вулканических извержений;
  • движения судов;
  • сильного ветра.

Чтобы понять механизм образования, нужно вспомнить, что вода волнуется и колеблется вынужденно – в результате физического воздействия. Галька, лодка, рука, коснувшаяся ее, приводят жидкую массу в движение, создавая колебания разной силы.

Характеристики

Волны – это тоже движение воды по поверхности водоема. Они являются результатом сцепления частиц воздуха и жидкости. Поначалу водно-воздушный симбиоз вызывает рябь на поверхности воды, а затем заставляет двигаться водные толщи.

Размер, длина и сила меняются, в зависимости от силы ветра. Во время шторма мощные столпы поднимаются на 8 метров и растягиваются в длину почти на четверть километра.

Иногда сила настолько разрушительная, что обрушивается на прибрежную полосу, вырывает с корнем зонты, душевые и другие пляжные постройки, сносит все на своем пути. И это при том, что формируются колебания за несколько тысяч километров от берега.

Все волны можно разделить на 2 категории:

  • ветровые;
  • стоячие.

Ветровые

Ветровые, как следует из названия, образуются под воздействием ветра. Его порывы проносятся по касательной, нагнетая воду и вынуждая ее двигаться. Ветер подталкивает жидкую массу вперед перед собой, но сила тяжести тормозит процесс, толкая ее обратно. Движения на поверхности, возникающие в результате влияния двух сил, напоминают подъемы и спуски. Их пики называются гребнями, а основания – подошвами.

Выяснив, почему образуются на море волны, открытым остался вопрос о том, почему они совершают колебательные движения вверх и вниз? Объяснение простое – непостоянство ветра. Он то стремительно и порывисто налетает, то стихает. Высота гребня, периодичность колебаний напрямую зависят от его силы и мощности. Если скорость перемещения и сила воздушных потоков превышают показатели нормы, поднимается шторм. Еще одна причина – возобновляемая энергия.

Возобновляемая энергия

Иногда на море полный штиль, а волны образуются. Почему? Океанографы и географы объясняют это явление возобновляемой энергией. Водные колебания являются ее источником и способы сохранять потенциал длительное время.

В жизни это выглядит примерно так. Ветер создает определенное количество колебаний в водоеме. Энергии этих колебаний хватит на несколько часов. За это время жидкие образования преодолевают расстояние в десятки километров и «швартуются» в районах, где солнечно, нет ветра, и водоем спокоен.

Стоячие

Стоячие или одиночные волны возникают вследствие толчков на океаническом дне, характерном для землетрясений, извержений вулканов, а также из-за резкого изменения атмосферного давления.

Это явление называется сейши, что переводится с французского языка как «раскачиваться». Сейши характерно для бухт, заливов и некоторых морей, представляет опасность для пляжей, сооружений в прибрежной полосе, пришвартованных у причала кораблей и людей, находящихся на борту.

Конструктивные и деструктивные

Образования, преодолевающие большие расстояния и при этом не меняющие форму и не утрачивающие энергию, ударяются об берег и разбиваются. При этом каждый накат по-разному влияет на прибрежную полосу. Если он намывает берег, то классифицируется как конструктивный.

Деструктивный накат воды обрушивается своей мощью на побережье, разрушая его, постепенно смывая песок и гальку с пляжной полосы. В этом случае природное явление классифицируется как деструктивное.

Деструкция бывает разной разрушительной силы. Иногда она настолько мощная, что обрушивает склоны, раскалывает утесы, разделяет скалы. Со временем даже самые твердые скалы разрушаются. Крупнейший маяк Америки построили на мысе Гаттерас в 1870 году. С тех пор море продвинулось почти на 430 метров в глубину побережья, смыв прибрежную полосу и пляжи. Это лишь один из десятков фактов.

Цунами – разновидность деструктивных водных образований, характеризующихся большой разрушительной силой. Скорость их перемещения доходит до 1000 км/ч. Это выше, чем у реактивного самолета. На глубине высота гребня цунами небольшая, но возле берега они снижают скорость, зато наращивают высоту до 20 метров.

В 80% случаев цунами являются следствием подводных землетрясений, в оставшихся 20% — извержений вулканов и оползней. Вследствие землетрясений дно смещается по вертикали: одна его часть опускается, а вторая – параллельно поднимается. На поверхности водоема образуются колебания разной силы.

Аномальные убийцы

Они также известны как блуждающие, монстры, аномальные и больше характерны для океанов.

Еще 30-40 лет назад рассказы моряков об аномальных колебаниях воды считали небылицами, потому что в существовавшие научные теории и расчеты свидетельства очевидцев не укладывались. Высота 21 метр считалась предельной для океанических и морских колебаний.

Первые письменные упоминания о монстрах датированы 1826 годом. А в 1933 году корабль американских ВМС, попавший в затяжной шторм, столкнулся с гигантской волной. Экипаж чудом выжил – очевидцы подтвердили факт. Подобные случаи фиксировались и впоследствии.

1 января 1995 года, когда приборы, установленные на нефтяной платформе, впервые официально зафиксировали аномальный 25,6-метровый водный столп, ученые занялись исследованием явления. За последующие 3 недели исследования произошло еще 10 аналогичных явлений в разных уголках планеты.

Причины образования экстремальных волн до конца не изучены, существуют на уровне гипотез. Одна из теорий объясняет явление эффектами нелинейности, вследствие которых образуются небольшие группы волн и преодолевают большие расстояния, не меняя первоначальной структуры.

Проще говоря, под воздействием внутренних факторов образовалась 20-метровая водная глыба и отправилась за десятки километров, не меняя первоначальной формы. Но, опять же, это одна из теорий. Подтвержденного фактами объяснения пока нет, зато факт явления уже научно подтвержден и не оспаривается.

Почему волны на море?

5 (100%) 1 проголосовавших

Как образуются волны? Отчёты о состоянии прибоя и прогнозы образования волн составляются по результатам научных исследований и моделирования погоды. Для того чтобы узнать, какие волны будут формироваться в ближайшее время, важно понимать то, как они образуются.

Главной причиной образования волн является ветер. Волны, наилучшим образом подходящие для сёрфинга, формируются в результате взаимодействия ветров над поверхностью океана, вдали от берега. Воздействие ветра - это первый этап образования волны.

Ветры, дующие в той или иной местности с берега, также могут быть причиной образования волн, однако при этом они могут приводить к ухудшению качества разбивающихся волн.

Установлено, что ветры, дующие с моря, обычно приводят к образованию нестабильных и неровных волн, поскольку они воздействуют на направление движения волны. Ветры, дующие с берега, в определённом смысле служат своего рода уравновешивающей силой. Волна проходит многие километры из глубины океана до берега, а ветер с суши оказывает «тормозящий» эффект на лицо волны, позволяя ей дольше не разбиваться.

Области низкого давления = хорошие волны для сёрфинга

Теоретически, области низкого давления способствуют образованию хороших, мощных волн. В глубине таких областей скорость ветра выше, и порывы ветра формируют больше волн. Трение, создаваемое этими ветрами, помогает образовываться мощным волнам, которые проходят тысячи километров, пока не натолкнутся на конечные препятствия, то есть прибрежные территории, на которых живут люди.

Если ветры, образующиеся в областях низкого давления, продолжают дуть на поверхность океана на протяжении долгого времени, то волнение становится более интенсивным, поскольку энергия накапливается во всех образующихся волнах. Кроме того, если ветры из областей низкого давления воздействуют на очень большую акваторию океана, то все образующиеся волны сосредотачивают в себе ещё большую энергию и мощь, что приводит к формированию ещё более крупных волн.

От волн в океане к волнам для сёрфинга: морское дно и другие препятствия

Мы уже проанализировали то, как образуется волнение в море и порождаемые им волны, но после «рождения» таким волнам ещё предстоит пройти огромное расстояние до берега. Волнам, зародившимся в океане, предстоит проделать длинный путь, прежде чем они достигнут суши.

Во время своего путешествия, ещё до того, как на них встанут сёрферы, этим волнам придётся преодолеть другие препятствия. Высота зарождающейся волны не совпадает с высотой волн, на которых катаются сёрферы.

Продвигаясь через океан, волны подвергаются воздействию неровностей морского дна. Когда гигантские движущиеся массы воды преодолевают возвышения на морском дне, общее количество энергии, сосредоточенное в волнах, изменяется.

Например, континентальные шельфы на удалении от берега оказывают сопротивление движущимся волнам за счёт силы трения, а к тому моменту, как волны достигают прибрежных акваторий, где глубина небольшая, они уже теряют свою энергию, силу и мощь.

Когда волны перемещаются по глубоководным акваториям, не встречая препятствий на своём пути, они, как правило, обрушиваются на береговую линию с огромной силой. Глубины океанического дна и их изменения, происходящие со временем, изучаются в рамках батиметрических исследований.

По карте глубин легко найти самые глубокие и самые мелководные акватории океанов нашей планеты. Изучение рельефа морского дна имеет большое значение для предотвращения крушений кораблей и круизных лайнеров.

Кроме того, при изучении структуры дна можно получить ценную информацию для прогнозирования прибоев на определённом серф-споте. Когда волны достигают мелководья, их скорость обычно снижается. Несмотря на это, длина волны сокращается, а гребень увеличивается, в результате чего возрастает высота волны.

Песчаные отмели и увеличение гребня волны

Песчаные отмели, например, всегда изменяют характер бич-брейков. Именно поэтому качество волн со временем меняется в лучшую или худшую сторону. Песчаные неровности на дне океана позволяют образовываться чётким сосредоточенным волновым гребням, с которых сёрферы могут начинать скольжение.

Наталкиваясь на новую песчаную отмель, волна, как правило, образует новый гребень, поскольку подобное препятствие приводит к возвышению гребня, то есть формированию волны, пригодной для сёрфинга. К другим препятствиям для волн относятся буны, затопленные суда либо просто естественные или искусственные рифы.

Волны зарождаются благодаря ветру и по мере движения подвергаются влиянию рельефа морского дна, осадков, приливов, отбойных течений у побережий, местных ветров и неровностей дна. Все эти погодные и геологические факторы способствуют образованию волн, подходящих для сёрфинга, кайтсёрфинга, виндсёрфинга и буги-сёрфинга.

Прогнозирование волн: теоретические основы

  • Волны с длинным периодом, как правило, больше и мощнее.
  • Волны с коротким периодом, как правило, меньше и слабее.
  • Периодом волны называется время между образованием двух чётко выраженных гребней.
  • Частота волн - это количество волн, проходящих через определённую точку за определённое время.
  • Большие волны движутся быстро.
  • Маленькие волны движутся медленно.
  • В областях низкого давления образуется интенсивное волнение.
  • Для областей низкого давления характерна дождливая погода и облачность.
  • Для областей высокого давления характерна тёплая погода и ясное небо.
  • В глубоководных прибрежных акваториях образуются более крупные волны.
  • Цунами не пригодны для сёрфинга.

6. Морские волны.

© Владимир Каланов,
"Знания-сила".

Поверхность моря всегда подвижна, даже при полном безветрии. Но вот подул ветер, и на воде сразу появляется рябь, которая переходит в волнение тем быстрее, чем сильнее дует ветер. Но какой бы силы ни был ветер, он не может вызвать волны больше определённых наибольших размеров.

Волны, возникающие от ветра, считаются короткими. В зависимости от силы и продолжительности ветра их длина и высота колеблются от нескольких миллиметров до десятков метров (в шторм длина ветровых волн доходит до 150-250 метров).

Наблюдения за поверхностью моря показывают, что волнение становится сильным уже при скорости ветра более 10 м/с, при этом волны поднимаются до высоты 2,5-3,5 метров, обрушиваясь с грохотом на берег.

Но вот ветер переходит в шторм , и волны достигают огромных размеров. На земном шаре много мест, где дуют очень сильные ветры. Например, в северо-восточной части Тихого океана восточнее Курильских и Командорских островов, а также к востоку от главного японского острова Хонсю в декабре-январе максимальные скорости ветров составляют 47-48 м/с.

В южной части Тихого океана максимальные скорости ветров отмечаются в мае в районе к северо-востоку от Новой Зеландии (49 м/с) и вблизи Южного полярного круга в районе островов Баллени и Скотта (46 м/с).

Нами лучше воспринимаются скорости, выражённые километрами в час. Так вот скорость 49 м/с составляет почти 180 км/ч. Уже при скорости ветра более 25 м/с поднимаются волны высотой 12-15 метров. Такая степень волнения оценивается 9–10 баллами как жестокий шторм.

Замерами установлено, что высота штормовой волны в Тихом океане достигает 25 метров. Имеются сообщения, что наблюдались волны высотой около 30 метров. Правда, эта оценка сделана не на основании инструментальных замеров, а приблизительно, на глаз.

В Атлантическом океане максимальная высота ветровых волн достигает 25 метров.

Длина штормовых волн не превышает 250 метров.

Но вот шторм прекратился, стих ветер, а море всё не успокаивается. Как отголосок шторма на море возникает зыбь . Волны зыби (их длина достигает 800 метров и более) перемещаются на огромные расстояния в 4-5 тысяч км и со скоростью 100 км/ч, а иногда и выше, подходят к берегу. В открытом море низкие и длинные волны зыби незаметны. При подходе к берегу скорость движения волны из-за трения о дно снижается, но высота возрастает, передний склон волны делается круче, на вершине появляется пена, и гребень волны с грохотом обрушивается на берег – так возникает прибой – явление столь же красочное и величественное, сколь и опасное. Сила прибоя бывает колоссальной.

Столкнувшись с препятствием, вода вздымается на большую высоту и повреждает маяки, портовые краны, волноломы и другие сооружения. Выбрасывая со дна камни, прибой может повредить даже самые высокие и удалённые от берега части маяков и зданий. Был случай, когда прибой сорвал колокол с одного из английских маяков с высоты 30,5 метров над уровнем моря. Прибой на нашем озере Байкал иногда в штормовую погоду бросает камки весом до тонны на расстояние 20-25 метров от берега.

Чёрное море во время штормов в районе Гагры за 10 лет размыло и поглотило береговую полосу шириной в 20 метров. При подходе к берегу волны начинают свою разрушительную работу с глубины, равной половине их длины в открытом море. Так, при длине штормовой волны 50 метров, характерной для таких морей, как Чёрное или Балтийское, воздействие волн на подводный береговой склон начинается на глубине 25 м, а при длине волны 150 м, характерной для открытого океана, такое воздействие начинается уже на глубине 75 м.

Направления течений влияют на размеры и силу морских волн. При встречных течениях волны короче, но выше, а при попутных – наоборот, высота волн уменьшается.

Вблизи границ морских течений часто возникают волны необычной формы, напоминающей пирамиду, и опасные водовороты, которые внезапно появляются и так же внезапно исчезают. В таких местах судовождение становится особенно опасным.

Современные корабли обладают высокими мореходными качествами. Но бывает так, что, преодолев многие мили по бушующему океану, корабли оказываются ещё в большей опасности, чем в море, когда приходят в родную бухту. Могучий прибой, ломающий многотонные железобетонные волноломы дамбы, способен превратить даже крупный корабль в груду металла. В шторм лучше повременить с заходом в порт.

Для борьбы с прибоем специалисты в некоторых портах пробовали использовать воздух. Стальная труба с многочисленными мелкими отверстиями укладывалась на дно моря у входа в бухту. Воздух под большим давлением подавался в трубу. Вырываясь из отверстий, потоки пузырьков воздуха поднимались к поверхности и разрушали волну. Этот метод не нашёл пока широкого применения из-за недостаточной эффективности. Известно, что дождь, град, лёд и заросли морских растений успокаивают волнение и прибой.

Моряки давно заметили также, что вылитый за борт жир сглаживает волны и снижает их высоту. Лучше всего действует животный жир, например, китовая ворвань. Эффект от действия растительных и минеральных масел значительно слабее. Опыт показал, что 50 см 3 масла достаточно для того, чтобы уменьшить волнение на площади в 15 тысяч квадратных метров, то есть 1,5 гектара. Даже тонкий слой масляной плёнки заметно поглощает энергию колебательных движений частиц воды.

Да, всё это так. Но, Боже упаси, мы ни в коем случае не рекомендуем капитанам морских судов перед рейсом запасаться рыбьим или китовым жиром для того, чтобы потом выливать эти жиры в волны для успокоения океана. Ведь так дело может дойти до такого абсурда, что кто-то начнёт сливать в море и нефть, и мазут, и дизельное топливо, чтобы умилостивить волны.

Нам представляется, что лучший способ борьбы с волнами заключается в хорошо поставленной метеослужбе, заблаговременно оповещающей корабли о предполагаемом месте и времени возникновения шторма и предполагаемой его силе, в хорошей навигационной и лоцманской подготовке моряков и берегового персонала, а также в постоянном совершенствовании конструкции кораблей с целью повышения их мореходных качеств и технической надёжности.

Для научных и практических целей нужно знать полную характеристику волн: их высоту и длину, скорость и дальность их перемещения, мощность отдельного водяного вала и энергию волнения в конкретном районе.

Первые измерения волн были выполнены в 1725 году итальянским учёным Луиджи Марсильи. В конце XVIII – в начале XIX веков регулярные наблюдения за волнами и их измерение проводили русские мореплаватели И. Крузенштерн, О. Коцебу и В. Головин во время своих плаваний по Мировому океану. Техническая база измерений в те времена была очень слабой, специальных приборов для измерения волн на тогдашних парусниках, конечно, не было.

В настоящее время для этих целей, существуют очень сложные и точные приборы, которыми оснащаются исследовательские суда, выполняющие в океане не только замеры параметров волн, но и гораздо более сложные научные работы. Океан поныне хранит очень много тайн, раскрытие которых могло бы принести значительную пользу всему человечеству.

Когда говорят о скорости перемещения волн, о том, что волны набегают, накатываются на берег, нужно понимать, что перемещается не сама водная масса. Частицы воды, составляющие волну, поступательного движения практически не совершают. Перемещается в пространстве только форма волны, а частицы воды в волнующемся море совершают колебательные движения в вертикальной и, в меньшей степени, в горизонтальной плоскости. Сочетание того и другого колебательных движений приводит к тому, что фактически частицы воды в волнах движутся по круговым орбитам, диаметр которых равен высоте волны. Колебательные движения частиц воды быстро убывают с глубиной. Точные приборы показывают, например, что при высоте волны в 5 метров (штормовая волна) и длине 100 метров, на глубине в 12 метров диаметр волновой орбиты частиц воды равен уже 2,5 метра, а на глубине 100 метров – всего 2 сантиметра.

Длинные волны, в отличие от коротких и крутых, передают своё движение на большие глубины. На некоторых фотоснимках океанского дна вплоть до глубины 180 метров исследователи отмечали наличие песчаной ряби, образовавшейся под влиянием колебательных движений придонного слоя воды. Это значит, что и на такой глубине поверхностное волнение океана даёт о себе знать.

Нужно ли доказывать, какую опасность для кораблей представляет штормовая волна?

В истории мореплавания трагических случаев на море не счесть. Погибали и маленькие баркасы, и быстроходные парусники вместе с командами. Не застрахованы от коварной стихии и современные океанские лайнеры.

На современных океанских кораблях среди прочих устройств и приборов, обеспечивающих безопасное плавание, используются успокоители качки, не позволяющие судну получить недопустимо большой крен на борт. В одних случаях для этого используются мощные гироскопы, в других – выдвигающиеся подводные крылья, выравнивающие положение корпуса судна. Компьютерные системы на кораблях находятся в постоянной связи с метеорологическими спутниками и другими космическими аппаратами, подсказывающими штурманам не только места и силу штормов, но и наиболее благоприятный курс в океане.

Кроме поверхностных волн, в океане бывают и внутренние волны. Они образуются на границе раздела между двумя слоями воды разной плотности. Эти волны перемещаются медленнее поверхностных, но могут иметь большую амплитуду. Обнаруживают внутренние волны по ритмичным изменениям температуры на разных глубинах океана. Явление внутренних волн изучено пока недостаточно. Точно лишь установлено, что на границе между слоями с меньшей и большей плотностью возникают волны. Ситуация может выглядеть так: на поверхности океана полный штиль, а на какой-то глубине бушует шторм, по длине внутренние волны разделяются, как и обычные поверхностные, на короткие и длинные. У коротких волн длина намного меньше глубины, а у длинных, наоборот, длина превышает глубину.

Причин для появления внутренних волн в океане много. Границу раздела между слоями с разной плотностью может вывести из равновесия и движущееся крупное судно, и поверхностные волны, и морские течения.

Длинные внутренние волны проявляют себя, например, в таким образом: слой воды, являющийся водоразделом между более плотной («тяжёлой») и менее плотной («лёгкой») водой сначала медленно, часами поднимается, а затем неожиданно падает почти на 100 метров. Такая волна очень опасна для подводных лодок. Ведь если подводная лодка опустилась на определённую глубину, значит она уравновесилась слоем воды определённой плотности. И вдруг, неожиданно под корпусом лодки возникает слой менее плотной воды! Лодка немедленно проваливается в этот слой и опускается до той глубины, где менее плотная вода сможет её уравновесить. Но глубина может оказаться такой, где давление воды превысит прочность корпуса подводного корабля, и он будет в считанные минуты раздавлен.

По заключению американских специалистов, расследовавших причины гибели атомной субмарины «Трешер» в 1963 году в Атлантическом океане, этот подводный крейсер оказался именно в такой ситуации и был раздавлен огромным гидростатическим давлением. Свидетелей трагедии, естественно, не осталось, но версия о причине катастрофы подтверждается результатами наблюдений, проведённых научно-исследовательскими кораблями в районе гибели субмарины. А наблюдения эти показали, что здесь нередко возникают внутренние волны высотой более 100 метров.

Особый вид представляют собой волны, возникающие на море при перемене атмосферного давления. Они называются сейши и микросейши . Их изучением занимается океанология.

Итак, мы поговорили и о коротких, и о длинных волнах на море, как о поверхностных, так и внутренних. А теперь вспомним, что в океане возникают длинные волны не только от ветров и циклонов, но и от процессов, протекающих в земной коре и даже в более глубоких районах «нутра» нашей планеты. Длина таких волн многократно превосходит самые длинные волны океанской зыби. Эти волны называются цунами . По высоте волны цунами не намного превосходят большие штормовые волны, но длина их достигает сотен километров. Японское слово «цунами» означает в приблизительном переводе «портовая волна» или «прибрежная волна» . В какой-то мере это название передаёт суть явления. Дело в том, что в открытом океане цунами не представляет никакой опасности. На достаточном удалении от берегов цунами не буйствует, не производит разрушений, её невозможно даже заметить или ощутить. Все беды от цунами происходят на берегу, в портах и гаванях.

Возникает цунами чаще всего от землетрясений, вызванных перемещением тектонических плит земной коры, а также от сильных извержений вулканов.

Механизм образования цунами чаще всего таков: в результате смещения или разрыва участка земной коры происходит внезапный подъём или опускание значительного участка морского дна. Вследствие этого происходит быстрое изменение объёма водного пространства, и в воде возникают упругие волны, распространяющиеся со скоростью около полутора километров в секунду. Эти мощные упругие волны и порождают цунами на поверхности океана.

Возникнув на поверхности, волны цунами кругами разбегаются от эпицентра. В месте возникновения высота волны цунами невелика: от 1 сантиметра до двух метров (иногда до 4-5 метров), но чаще в пределах от 0,3 до 0,5 метра, а длина волны огромна: 100-200 километров. Незаметные в океане, эти волны, подойдя к берегу, подобно ветровым волнам, становятся круче и выше, достигая иногда высоты 10-30 и даже 40 метров. Обрушившись на берег, цунами уничтожают и разрушают всё на своём пути и, что самое страшное, несут гибель тысячам, а иногда десяткам и даже сотням тысяч людей.

Скорость распространения цунами может быть от 50 и до 1000 километров в час. Измерения показывают, что скорость волны цунами меняется пропорционально квадратному корню от глубины моря. В среднем цунами несётся по открытому простору океана со скоростью 700-800 километров в час.

Цунами не относятся к регулярным явлениям, но они случаются не так уже редко.

В Японии уже более 1300 лет ведётся регистрация волн цунами. В среднем на Страну восходящего Солнца разрушительные цунами обрушивались каждые 15 лет (мелкие, не имевшие серьёзных последствий цунами не учитываются).

Больше всего цунами возникает в бассейне Тихого океана. Цунами бушевали на Курильских, Алеутских, Гавайских, Филиппинских островах. Набрасывались они и на побережье Индии, Индонезии, Северной и Южной Америки, а также на страны Европы, расположенные на атлантическом побережье и в Средиземноморье.

Последним самым разрушительным нашествием цунами было страшное наводнение 2004 года с огромными разрушениями и человеческими жертвами, которое имело сейсмические причины и зародилось в центре Индийского океана.

Для того, чтобы иметь представление о конкретных проявлениях цунами можно обратиться к многочисленным материалам, которые описывают это явление.

Мы приведём лишь несколько примеров. Вот как описывались в прессе результаты землетрясения, случившегося в Атлантическом океане невдалеке от Пиренейского полуострова 1 ноября 1755 года. Страшные разрушения произвело оно в столице Португалии Лиссабоне. До сих пор в центре города возвышаются руины когда-то величественного здания женского монастыря Кармо, которое так и не было восстановлено. Эти руины напоминают жителям Лиссабона о трагедии, пришедшей в город 1 ноября 1755 года. Вскоре после землетрясения море отступило, а затем на город обрушилась волна высотой 26 метров. Многие жители, спасаясь от падающих обломков зданий, покинули узкие улицы города и собрались на широкой набережной. Нахлынувшая волна смыла в море 60 тысяч человек. Лиссабон не был полностью затоплен потому, что он расположен на нескольких высоких холмах, но по низменным местам море залило сушу на расстояние до 15 километров от берега.

27 августа 1883 года произошло мощное извержение вулкана Кратау, находящегося в Зондском проливе Индонезийского архипелага. В небо поднялись тучи пепла, возникло сильнейшее землетрясение, породившее волну высотой 30-40 метров. За несколько минут эта волна смыла в море все посёлки, расположенные на низких берегах западной части Явы и юга Суматры, погибло 35 тысяч человек. Со скоростью 560 километров в час волны цунами прокатились через Индийский и Тихий океаны, достигнув берегов Африки, Австралии и Америки. Даже в Атлантическом океане, несмотря на его изолированность и удалённость в отдельных местах (Франция, Панама) был отмечен некоторый подъём воды.

15 июня 1896 года набежавшие волны цунами разрушили на восточном побережье Японского острова Хонсю 10 тысяч домов. В результате погибло 27 тысяч жителей.

Бороться с цунами невозможно. Но можно и нужно минимизировать урон, который они приносят людям. Поэтому теперь во всех сейсмически активных районах, где существует угроза образования волн цунами, созданы специальные службы предупреждения, оснащённые необходимой аппаратурой, принимающей с расположенных в разных местах побережья чувствительных сейсмографов сигналы об изменении сейсмической обстановки. Население таких районов регулярно инструктируется по правилам поведения при угрозе появления волн цунами. Службы предупреждения о цунами в Японии и на Гавайских островах уже не раз своевременно подавали тревожные сигналы о приближении цунами, чем спасли не одну тысячу человеческих жизней.

Все виды течений и волн характеризуются тем, что они несут в себе колоссальную энергию – тепловую и механическую. Но использовать эту энергию человечество не в состоянии, если, конечно, не считать попыток использования энергии приливов и отливов. Кто-то из учёных, вероятно, любитель статистики, подсчитал, что мощность морских приливов превышает 1000000000 киловатт, а всех рек земного шара – 850000000 киловатт. Энергия одного квадратного километра штормящего моря оценивается миллиардами киловатт. Что это означает для нас? Только то, что человек не может использовать и миллионную часть энергии приливов и штормов. В какой-то мере люди используют энергию ветра для получения электричества и других целей. Но это, как говорится, уже другая история.

© Владимир Каланов,
"Знания-сила"

Волны морские

Во́лны морские

периодические колебания поверхности моря или океана, обусловленные возвратно-колебательными или круговыми движениями воды. В зависимости от причин, вызывающих движение, различаются волны ветровые, приливные (приливы и отливы ), барические (сейши) и сейсмические (цунами ). Волны характеризуются высотой , равной расстоянию по вертикали между гребнем и подошвой волны, длиной – расстоянием по горизонтали между двумя смежными гребнями, скоростью распространения и периодом . У ветровых волн он длится ок. 30 с, у барических и сейсмических – от нескольких минут до нескольких часов, у приливных измеряется часами.

В водоёмах наиболее распространены ветровые волны. Они образуются и развиваются благодаря энергии ветра, передаваемой воде за счёт трения и путём давления воздушного потока на склоны гребней волн. Они всегда существуют в открытом океане и могут иметь самые разнообразные размеры, достигая дл. до 400 м, выс. 12–13 м и скорости распространения 14–15 м/с. Макс. зарегистрированная выс. ветровых волн составляет 25–26 м, возможно существование и более высоких волн. В начальной стадии развития ветровые волны бегут параллельными рядами, которые затем распадаются на обособленные гребни. На глубоководье размеры и характер волн определяются скоростью ветра, продолжительностью его действия и расстоянием от подветренного пространства; малые глубины ограничивают рост волн. Если ветер, вызвавший волнение, стихает, то ветровые волны превращаются в т. н. зыбь. Она часто наблюдается одновременно с ветровыми волнами, при этом не всегда совпадая с ними по направлению и высоте.

В зоне прибоя наблюдаются т. н. прибойные биения – периодические подъёмы уровня воды при подходе группы высоких волн. Выс. подъёма может составлять от 10 см до 2 м, редко до 2,5 м. Сейши обычно наблюдаются в ограниченных водоёмах (морях, заливах, проливах, озёрах) и представляют собой стоячие волны, вызванные чаще всего быстрым изменением атм. давления, реже иными причинами (резкое поступление паводковых вод, сильные дожди и проч.). Однажды вызванная деформация уровня воды приводит к постепенно затухающим колебаниям в ней. При этом в некоторых точках уровень воды остаётся постоянным – это т. н. узлы стоячей волны. Выс. таких волн незначительна – обычно несколько десятков сантиметров, редко до 1–2 м.

География. Современная иллюстрированная энциклопедия. - М.: Росмэн . Под редакцией проф. А. П. Горкина . 2006 .


Смотреть что такое "волны морские" в других словарях:

    Возмущения поверхности моря или океана, вызываемые ветром, приливообразующими силами Луны, Солнца, подводными землетрясениями и др. Подразделяются на ветровые, приливные, гравитационные (цунами) и др. Волны на поверхности водной среды существуют… … Морской словарь

    Волны на поверхности моря или океана. Благодаря большой подвижности частицы воды под действием разного рода сил легко выходят из состояния равновесия и совершают колебательные движения. Причинами, вызывающими появление волн, являются… …

    ВОЛНЫ морские - колебания частиц воды около положения равновесия, распространяющиеся в море. Вызываются ветром, приливообразующими силами, изменением атмосферного давления, землетрясениями, движением твердых тел в воде и др. Основные элементы волнового движения… … Морской энциклопедический справочник

    Волны, возникающие и распространяющиеся по свободной поверхности жидкости или на поверхности раздела двух несмешивающихся жидкостей. В. на п. ж. образуются под влиянием внешнего воздействия, в результате которого поверхность жидкости… … Большая советская энциклопедия

    Возмущения, распространяющиеся с конечной скоростью в пространстве и несущие с собой энергию без переноса вещества. Наиболее часто встречаются упругие волны (морские, звуковые и т. п.). Электромагнитные волны возбуждаются атомами, молекулами,… … Морской словарь

    Sea Waves Жанр документальный фильм Режиссёр {{{Режиссёр}}} Кинокомпания Эдисон … Википедия

    ВОЛНЫ - Увидеть во сне волны – к препятствиям в делах, усилиям и борьбе за успех. Если волны чистые, значит, вы обретете новые знания, которые помогут вам лучше определиться в жизни. Грязные волны предвещают ошибку, чреватую непоправимыми… … Сонник Мельникова

    Тёмная крачка (Onychoprion fuscata) способна продержаться в воздухе 3 10 лет, лишь иногда опускаясь на воду … Википедия

    Фотография большой волны, надвигающейся на торговое судно. Приблизительно 1940 е годы Волны убийцы (Блуждающие волны, волны монстры, белая волна, англ. rogue wave в … Википедия

    Эта страница глоссарий. # А … Википедия

Книги

  • Морские рассказы , Гусева Галина. Морская романтика всегда привлекала людей… Так много таит в себе вечная водная стихия, так хочется покорять волны одна за одной. Уникальный дневник заядлого любителя путешествий на яхте -…

Волнение — это колебательное движение воды. Оно воспринимается наблюдателем как движение волн по поверхности воды. На самом же деле водная поверхность совершает колебания вверх-вниз от среднего уровня положения равновесия. Форма волн при волнении постоянно изменяется в связи с движением частиц по замкнутым, почти круговым орбитам.

Каждая волна представляет собой плавное соединение возвышений и углублений. Основными частями волны являются: гребень — самая высокая часть; подошва - самая низкая часть; склон - профиль между гребнем и подошвой волны. Линия вдоль гребня волны называется фронтом волны (рис. 1).

Рис. 1. Основные части волны

Основные характеристики волн — это высота - разность уровней гребня и подошвы волны; длина - кратчайшее расстояние межу смежными гребнями или подошвами волн; крутизна - угол между склоном волны и горизонтальной плоскостью (рис. 1).

Рис. 1. Основные характеристики волны

Волны обладают очень большой кинетической энергией. Чем выше волна, тем больше в ней заключено кинетической энергии (пропорционально квадрату увеличения высоты).

Под влиянием силы Кориолиса справа по течению вдали от материка возникает водяной вал, а у суши создается депрессия.

По происхождению волны подразделяются следующим образом:

  • волны трения;
  • барические волны;
  • сейсмические волны или цунами;
  • сейши;
  • приливные волны.

Волны трения

Волны трения, в свою очередь, могут быть ветровыми (рис. 2) или глубинными. Ветровые волны возникают вследствие ветровые волнытрения на границе воздуха и воды. Высота ветровых волн не превышает 4 м, но при сильных и затяжных штормах она возрастает до 10-15 м и выше. Наиболее высокие волны — до 25 м — наблюдаются в полосе западных ветров Южного полушария.

Рис. 2. Ветровые волны и волны прибоя

Пирамидальные, высокие и крутые ветровые волны получили название толчея. Эти волны присущи центральным областям циклонов. Когда ветер стихает, волнение приобретает характер зыби , т. е. волнения по инерции.

Первичная форма ветровых волн - рябь. Она возникает при скорости ветра менее 1 м/с, а при скорости, большей 1 м/с, образуются сначала мелкие, а потом более крупные волны.

Волна близ берегов, в основном на мелководьях, основывающаяся на поступательных движениях, получила название прибоя (см. рис. 2).

Глубинные волны возникают на границе двух слоев воды с разными свойствами. Они часто возникают в проливах, с двумя этажами течения, близ устьев рек, у кромки тающих льдов. Эти волны перемешивают морскую воду и являются очень опасными для моряков.

Барическая волна

Барические волны возникают из-за быстрой смены атмосферного давления в местах происхождения циклонов, особенно тропических. Обычно эти волны одиночные и не приносят особого вреда. Исключение составляют случаи, когда они совпадают с высоким приливом. Таким бедствиям наиболее часто подвергаются Антильские острова, полуостров Флорида, побережья Китая, Индии, Японии.

Цунами

Сейсмические волны возникают под воздействием подводных толчков и прибрежных землетрясений. Это очень длинные и невысокие в открытом океане волны, но сила их распространения достаточно велика. Они движутся с очень большой скоростью. У побережий их длина сокращается, а высота резко возрастает (в среднем от 10 до 50 м). Их появление влечет за собой человеческие жертвы. Сначала морс отступает на несколько километров от берега, набирая силу для толчка, а потом волны с огромной скоростью выплескиваются на берег с интервалом 15-20 мин (рис. 3).

Рис. 3. Трансформация цунами

Японцы назвали сейсмические волны цунами , и этот термин используется во всем мире.

Сейсмический пояс Тихого океана является основным районом образования цунами.

Сейши

Сейши — это стоячие волны, которые возникают в заливах и внутренних морях. Они происходят по инерции после прекращения действия внешних сил — ветра, сейсмических толчков, резких изменений , выпадения интенсивных осадков и т. д. При этом в одном месте вода поднимается, а в другом — опускается.

Приливная волна

Приливные волны — это движения , совершаемые под влиянием приливообразующих сил Луны и Солнца. Обратная реакция морской воды на прилив - отлив. Полоса, осушаемая во время отлива, называется осушкой.

Существует тесная связь высоты приливов и отливов с фазами Луны. В новолуния и полнолуния наблюдаются самые высокие приливы и самые низкие отливы. Они называются сизигийными. В это время лунные и солнечные приливы, наступая одновременно, накладываются друг на друга. В промежутках между ними, в первую и последнюю четверги фазы Луны, наблюдаются самые низкие, квадратурные приливы.

Как уже было сказано во втором разделе, в открытом океане высота прилива невелика — 1,0-2,0 м, а у расчлененных берегов она резко возрастает. Максимальной величины прилив достигает на атлантическом побережье Северной Америки, в заливе Фанди (до 18 м). В России максимальная величина прилива — 12,9 м — отмечена в заливе Шелихова (Охотское море). Во внутренних морях приливы мало заметны, например, в Балтийском морс у Санкт-Петербурга прилив составляет 4,8 см, а вот по некоторым рекам прилив прослеживается на сотни и даже тысячи километров от устья, например, в Амазонке — до 1400 см.

Крутую приливную волну, поднимающуюся вверх по реке, называют бором. На Амазонке бор достигает высоты 5 м и ощущается на расстоянии 1400 км от устья реки.

Даже при спокойной поверхности в толще океанских вод происходит волнение. Это так называемые внутренние волны — медленные, но весьма значительные по размаху, достигающему порой сотен метров. Они возникают в результате внешнего воздействия на неоднородную по вертикали массу воды. К тому же так как температура, соленость и плотность океанской воды изменяются с глубиной не постепенно, а скачкообразно от одного слоя к другому, на границе между этими слоями и возникают специфические внутренние волны.

Морские течения

Морские течения — это горизонтальные поступательные движения водных масс в океанах и морях, характеризующиеся определенным направлением и скоростью. Они достигают нескольких тысяч километров в длину, десятков-сотен километров в ширину, сотен метров в глубину. По физико-химическим свойствам воды морских течений отличны от окружающих.

По продолжительности существования (устойчивости) морские течения подразделяют следующим образом:

  • постоянные , которые проходят в одних и тех же районах океана, имеют одно генеральное направление, более или менее постоянную скорость и устойчивые физико-химические свойства переносимых водных масс (Северное и Южное пассатные, Гольфстрим и др.);
  • периодические , у которых направление, скорость, температура подчинены периодическим закономерностям. Происходят они через равные промежутки времени в определенной последовательности (летнее и зимнее муссонные течения в северной части Индийского океана, приливно-отливные течения);
  • временные , вызываемые чаще всего ветрами.

По температурному признаку морские течения бывают:

  • теплые , которые имеют температуру выше, чем окружающая вода (например. Мурманское течение с температурой 2-3 °С среди вод О °С); они имеют направление от экватора к полюсам;
  • холодные , температура которых ниже окружающей воды (например, Канарское течение с температурой 15-16 °С среди вод с температурой около 20 °С); эти течения направлены от полюсов к экватору;
  • нейтральные , которые имеют температуру, близкую к окружающей среде (например, экваториальные течения).

По глубине расположения в толще воды различают течения:

  • поверхностные (до 200 м глубины);
  • подповерхностные , имеющие направление, противоположное поверхностному;
  • глубинные , движение которых совершается очень медленно — порядка нескольких сантиметров или первых десятков сантиметров в секунду;
  • придонные , регулирующие обмен вод между полярными — субполярными и экваториально-тропическими широтами.

По происхождению выделяют следующие течения:

  • фрикционные , которые могут быть дрейфовыми или ветровыми. Дрейфовые возникают под влиянием постоянных ветров, а ветровые создаются сезонными ветрами;
  • градиентно-гравитационные , среди которых выделяют стоковые , образующиеся в результате наклона поверхности, вызванного избытком вод вследствие их притока из океана и обильных осадков, и компенсационные , которые возникают благодаря оттоку вод, скудным осадкам;
  • инертные , которые наблюдаются после прекращения действия возбуждающих их факторов (например, приливные течения).

Система течений океана обусловлена общей циркуляцией атмосферы.

Если представить гипотетический океан, непрерывно простирающийся от Северного полюса к Южному, и наложить на него генерализированную схему атмосферных ветров, то с учетом отклоняющей силы Кориолиса получим шесть замкнутых колец -
круговоротов морских течений: Северное и Южное экваториальные, Северное и Южное субтропические, Субарктическое и Субантарктическое (рис. 4).

Рис. 4. Круговороты морских течений

Отступления от идеальной схемы вызваны наличием материков и особенностями их распределения по земной поверхности Земли. Однако, как и на идеальной схеме, в действительности на поверхности океана наблюдается зональная смена крупных — протяженностью в несколько тысяч километров — не полностью замкнутых циркуляционных систем: это экваториальная антициклоническая; тропические циклонические, северная и южная; субтропические антициклонические, северная и южная; антарктическая циркумполярная; высокоширотные циклонические; арктическая антициклоническая системы.

В Северном полушарии они движутся по часовой стрелке, в Южном — против. С запада на восток направлены экваториальные межпассатные противотечения.

В умеренных субполярных широтах Северного полушария существуют малые кольца течений вокруг барических минимумов. Движение вод в них направлено против часовой стрелки, а в Южном полушарии — с запада на восток вокруг Антарктиды.

Течения в зональных циркуляционных системах достаточно хорошо прослеживаются до глубины 200 м. С глубиной они меняют направление, слабеют и превращаются в слабые вихри. Взамен на глубине усиливаются меридиональные течения.

Самые мощные и глубокие из поверхностных течений играют важнейшую роль в глобальной циркуляции Мирового океана. Наиболее устойчивые поверхностные течения — это Северное и Южное пассатные течения Тихого и Атлантического океанов и Южное пассатное течение Индийского океана. Они имеют направление с востока на запад. Для тропических широт характерны теплые сточные течения, например Гольфстрим, Куросио, Бразильское и др.

Под действием постоянных западных ветров в умеренных широтах существуют теплые Северо-Атлантическое и Северо-

Тихоокеанское течения в Северном полушарии и холодное (нейтральное) течение Западных ветров — в Южном. Последнее образует кольцо в трех океанах вокруг Антарктиды. Замыкают большие круговороты в Северном полушарии холодные компенсационные течения: вдоль западных берегов в тропических широтах — Калифорнийское, Канарское, а в Южном — Перуанское, Бенгальское, Западно-Австралийское.

Наиболее известными течениями также являются теплое Норвежское течение в Арктике, холодное Лабрадорское в Атлантике, теплое Аляскинское и холодное Курило-Камчатское — в Тихом океане.

Муссонная циркуляция в северной части Индийского океана порождает сезонные ветровые течения: зимнее — с востока на запад и летнее — с запада на восток.

В Северном Ледовитом океане направление движения вод и льдов происходит с востока на запад (Трансатлантическое течение). Причины его — обильный речной сток рек Сибири, вращательное циклоническое движение (против часовой стрелки) над Баренцевым и Карским морями.

Помимо циркуляционных макросистем существуют вихри открытого океана. Их размер — 100-150 км, а скорость перемещения водных масс вокруг центра — 10-20 см/с. Эти мезосистемы называются синоптическими вихрями. Считается, что именно в них заключено не менее 90 % кинетической энергии океана. Вихри наблюдаются не только в открытом океане, но и в морских течениях типа Гольфстрим. Здесь они вращаются с еще большей скоростью, чем в открытом океане, их кольцевая система лучше выражена, поэтому их называют рингами.

Для климата и природы Земли, особенно прибрежных районов, значение морских течений велико. Теплые и холодные течения поддерживают разницу температур западных и восточных побережий материков, нарушая ее зональное распределение. Так, незамерзающий Мурманский порт находится за Полярным кругом, а на восточном побережье Северной Америки замерзает залив св. Лаврентия (48° с.ш.). Теплые течения способствуют выпадению осадков, холодные, напротив, уменьшают возможность их выпадения. Поэтому территории, омываемые теплыми течениями, имеют влажный климат, а холодными — сухой. При помощи морских течений осуществляются миграция растений и животных, перенос питательных веществ и газовый обмен. Течения учитывают и при мореплавании.