Распределение частиц внешнем потенциальном поле. Распределение больцмана

До сих пор рассматривалось поведение идеального газа, не подверженного воздействию внешних силовых полей. Из опыта хорошо известно, что при действии внешних сил равномерное распространение частиц в пространстве может нарушиться. Так под действием силы тяжести молекулы стремятся опуститься на дно сосуда. Интенсивное тепловое движение препятствует осаждению, и молекулы распространяются так, что их концентрация постепенно уменьшается по мере увеличения высоты.

Выведем закон изменения давления с высотой предполагая, что поле тяготения однородно, температура постоянна и масса всех молекул одинакова. Если атмосферное давление на высоте h равно p, то на высоте h + dh оно равно p + dp (при dh > 0, dp < 0, так как p уменьшается с увеличением h ).

Разность давления на высотах h и h+dh мы можем определить как вес молекул воздуха заключённого в объёме с площадью основания равного 1 и высотой dh .

Плотность на высоте h , и так как , то = const.

Из уравнения Менделеева-Клапейрона.

С изменением высоты от h 1 до h 2 давление изменяется от p 1 до p 2

Пропотенцируем данное выражение (

Барометрическая формула, показывает, как меняется давление с высотой

n концентрация молекул на высоте h,

n 0 концентрация молекул на высоте h =0.

Потенциальная энергия молекул в поле тяготения

Распределение Больцмана во внешнем потенциальном поле. Из него следует, что при T = const плотность газа больше там, где меньше потенциальная энергия молекул.

24.Реальный газ - газ, который не описывается уравнением состояния идеального газа Клапейрона - Менделеева.

Зависимости между его параметрами показывают, что молекулы в реальном газе взаимодействуют между собой и занимают определенный объём. Состояние реального газа часто на практике описывается обобщённым уравнением Менделеева - Клапейрона:

где p - давление; V - объем; T - температура; Z r = Z r (p,T) - коэффициент сжимаемости газа; m - масса; М - молярная масса; R - газовая постоянная.Также существует такое понятие как критическая температура, если газ находится при температуре выше критической (индивидуальна для каждого газа, например для углекислого газа примерно 304 К), то его уже невозможно превратить в жидкость, какое бы давление к нему не прилагалось. Данное явление возникает вследствие того, что при критической температуре силы поверхностного натяжения жидкости равны нулю. Если продолжать медленно сжимать газ при температуре большей критической, то после достижения им объёма, равного приблизительно четырем собственным объёмам молекул, составляющих газ, сжимаемость газа начинает резко падать.



25. Фазовые переходы. Фазовые переходы 1 и 2 рода. Диаграммы состояния вещества. Тройная точка. Классификация фазовых переходов При фазовом переходе первого рода скачкообразно изменяются самые главные, первичные экстенсивные параметры: удельный объём (т.е. плотность), количество запасённой внутренней энергии, концентрация компонентов и т. п. Подчеркнём: имеется в виду скачкообразное изменение этих величин при изменении температуры, давления и т. п., а не скачкообразное изменение во времени (насчёт последнего см. ниже раздел Динамика фазовых переходов). Наиболее распространённые примеры фазовых переходов первого рода: плавление и затвердевание, кипение и конденсация, сублимация и десублимация При фазовом переходе второго рода плотность и внутренняя энергия не меняются, так что невооружённым глазом такой фазовый переход может быть незаметен. Скачок же испытывают их вторые производные по температуре и давлению: теплоёмкость, коэффициент теплового расширения, различные восприимчивости и т. д. Фазовые переходы второго рода происходят в тех случаях, когда меняется симметрия строения вещества.

Тройная точка - точка на фазовой диаграмме, где сходятся три линии фазовых переходов. Тройная точка - это одна из характеристик химического вещества. Обычно тройная точка определяется значением температуры и давления, при котором вещество может равновесно находится в трёх (отсюда и название) агрегатных состояниях - твёрдом, жидком и газообразном. В этой точке сходятся линии плавления, кипения и сублимации.

ДИАГРАММА СОСТОЯНИЯ(фазовая диаграмма) - диаграмма, изображающая зависимость устойчивого фазового состояния одно- или многокомпонентного вещества от термодинамич. параметров, определяющих это состояние (темп-ры T , давления P , напряжённостей магн. H или электрич. E полей, концентрации с и др.). Каждая точка Д. с. (фигуративная точка) указывает на фазовый состав вещества при заданных значениях термодинамич. параметров (координатах этой точки). В зависимости от числа внеш. параметров Д. с. может быть двумерной, трёхмерной и многомерной. При исследовании равновесия фаз в условиях перем. давления строят изобарич. и изоконцентрац. сечения и проекции на плоскости T-P или Р-с . Наиб. полно изучены изобарич. Т-с сечения Т-Р-с Д. с., соответствующие атм. давлению.

26. Особенности поверхностного слоя жидкости. Коэффициент поверхностного натяжения.

Молекулы вещества в жидком состоянии расположены почти вплотную друг к другу. В отличие от твердых кристаллических тел, в которых молекулы образуют упорядоченные структуры во всем объеме кристалла и могут совершать тепловые колебания около фиксированных центров, молекулы жидкости обладают большей свободой. Каждая молекула жидкости, также как и в твердом теле, «зажата» со всех сторон соседними молекулами и совершает тепловые колебания около некоторого положения равновесия. Однако, время от времени любая молекула может переместиться в соседнее вакантное место. Такие перескоки в жидкостях происходят довольно часто; поэтому молекулы не привязаны к определенным центрам, как в кристаллах (см. §3.6), и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкостей. Из-за сильного взаимодействия между близко расположенными молекулами они могут образовывать локальные (неустойчивые) упорядоченные группы, содержащие несколько молекул. Это явление называется ближним порядком.

Пове́рхностное натяже́ние - термодинамическая характеристика поверхности раздела двух находящихся в равновесиифаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объём системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными.Поверхностное натяжение имеет двойной физический смысл - энергетический (термодинамический) и силовой (механический). Энергетическое (термодинамическое) определение: поверхностное натяжение - это удельная работа увеличения поверхности при её растяжении при условии постоянства температуры. Силовое (механическое) определение: поверхностное натяжение - это сила, действующая на единицу длины линии, которая ограничивает поверхность жидкости.

Барометрическая формула - зависимость давления или плотности газа от высоты в поле тяжести.

Для идеального газа, имеющего постоянную температуру и находящегося в однородном поле тяжести (во всех точках его объёма ускорение свободного падения одинаково), барометрическая формула имеет следующий вид:

где - давление газа в слое, расположенном на высоте , - давление на нулевом уровне

(), - молярная масса газа, - газовая постоянная, - абсолютная температура. Из барометрической формулы следует, что концентрация молекул (или плотность газа) убывает с высотой по тому же закону:

где - масса молекулы газа, - постоянная Больцмана.

Барометрическая формула может быть получена из закона распределения молекул идеального газа по скоростям и координатам в потенциальном силовом поле. При этом должны выполняться два условия: постоянство температуры газа и однородность силового поля. Аналогичные условия могут выполняться и для мельчайших твёрдых частичек, взвешенных в жидкости или газе.

Распределение Больцмана - это распределение по энергиям частиц (атомов, молекул) идеального газа в условиях термодинамического равновесия. Распределение Больцмана было открыто в 1868 - 1871 гг. австралийским физиком Л. Больцманом. Согласно распределению, число частиц n i с полной энергией E i равно:

n i =A ω i e ­E i /Kt (1)

где ω i - статистический вес (число возможных состояний частицы с энергией e i). Постоянная А находится из условия, что сумма n i по всем возможным значениям i равна заданному полному числу частиц N в системе (условие нормировки):

В случае, когда движение частиц подчиняется классической механике, энергию E i можно считать состоящей из кинетической энергии E iкин частицы (молекулы или атома), её внутренней энергии E iвн (напр., энергии возбуждения электронов) и потенциальной энергии E i , пот во внешнем поле, зависящей от положения частицы в пространстве:

E i = E i, кин + E i, вн + E i, пот (2)

Распределение частиц по скоростям является частным случаем распределения Больцмана. Оно имеет место, когда можно пренебречь внутренней энергией возбуждения

E i,вн и влиянием внешних полей E i,пот. В соответствии с (2) формулу (1) можно представить в виде произведения трёх экспонент, каждая из которых даёт распределение частиц по одному виду энергии.

В постоянном поле тяжести, создающем ускорение g, для частиц атмосферных газов вблизи поверхности Земли (или др. планет) потенциальная энергия пропорциональна их массе m и высоте H над поверхностью, т.е. E i, пот = mgH. После подстановки этого значения в распределение Больцмана и суммирования по всевозможным значениям кинетической и внутренней энергий частиц получается барометрическая формула, выражающая закон уменьшения плотности атмосферы с высотой.

В астрофизике, особенно в теории звёздных спектров, распределение Больцмана часто используется для определения относительной заселённости электронами различныхуровней энергии атомов. Если обозначить индексами 1 и 2 два энергетических состояния атома, то из распределения следует:

n 2 /n 1 = (ω 2 /ω 1) e -(E 2 -E 1)/kT (3) (ф-ла Больцмана).

Разность энергий E 2 -E 1 для двух нижних уровней энергии атома водорода >10 эВ, а значение kT, характеризующее энергию теплового движения частиц для атмосфер звёзд типа Солнца, составляет всего лишь 0,3-1 эВ. Поэтому водород в таких звёздных атмосферах находится в невозбуждённом состоянии. Так, в атмосферах звёзд, имеющих эффективную температуру Тэ > 5700 К (Солнце и др. звёзды), отношение чисел атомов водорода во втором и основном состояниях равно 4,2 10 -9 .

Распределение Больцмана было получено в рамках классической статистики. В 1924-26 гг. была создана квантовая статистика. Она привела к открытию распределений Бозе - Эйнштейна (для частиц с целым спином) и Ферми - Дирака (для частиц с полуцелым спином). Оба эти распределения переходят в распределение, когда среднее число доступных для системы квантовых состояний значительно превышает число частиц в системе, т. о. когда на одну частицу приходится много квантовых состояний или, др. словами, когда степень заполнения квантовых состояний мала. Условие применимости распределении Больцмана можно записать в виде неравенства.

Распределение Больцмана определяет распределение частиц в силовом поле в условиях теплового равновесия.

Пусть идеальный газ находится в поле консервативных сил в условиях теплового равновесия. При этом концентрация газа будет различной в точках с различной потенциальной энергией, что необходимо для соблюдения условий механического равновесия. Так, число молекул в единичном объеме n убывает с удалением от поверхности Земли, и давление, в силу соотношения P = nkT , падает.

Если известно число молекул в единичном объеме, то известно и давление, и наоборот. Давление и плотность пропорциональны друг другу, поскольку температура в нашем случае постоянна. Давление с уменьшением высоты должно возрастать, потому что нижнему слою приходится выдерживать вес всех расположенных сверху атомов.

Исходя из основного уравнения молекулярно-кинетической теории: P = nkT , заменим P и P 0 в барометрической формуле (2.4.1) на n и n 0 и получим распределение Больцмана для молярной массы газа:

(2.5.1)

Где n 0 и n - число молекул в единичном объёме на высоте h = 0 и h .

Так как а , то (2.5.1) можно представить в виде

(2.5.2)

С уменьшением температуры число молекул на высотах, отличных от нуля, убывает. При T = 0 тепловое движение прекращается, все молекулы расположились бы на земной поверхности. При высоких температурах, наоборот, молекулы оказываются распределёнными по высоте почти равномерно, а плотность молекул медленно убывает с высотой. Так как mgh – это потенциальная энергия U , то на разных высотах U = mgh – различна. Следовательно, (2.5.2) характеризует распределение частиц по значениям потенциальной энергии:

, (2.5.3)
это закон распределения частиц по потенциальным энергиям – распределение Больцмана. Здесь n 0 – число молекул в единице объёма там, где U = 0.

На рисунке 2.11 показана зависимость концентрации различных газов от высоты. Видно, что число более тяжелых молекул с высотой убывает быстрее, чем легких.

Рис. 2.11

Из (2.5.3) можно получить, что отношение концентраций молекул в точках с U 1 и i>U 2 равно:

. (2.5.4)

Больцман доказал, что соотношение (2.5.3) справедливо не только в потенциальном поле сил гравитации, но и в любом потенциальном поле, для совокупности любых одинаковых частиц, находящихся в состоянии хаотического теплового движения.

При рассмотрении закона распределения Максвелла предполагалось, что молекулы равномерно распределяются по всему объему сосуда, что справедливо, если объем сосуда небольшой.

Для больших объемов равномерность распределения молекул по объему нарушается из-за действия силы тяжести, вследствие чего плот­ность, а следовательно, и число молекул в единице объема будут неодинаковым.

Рассмотрим молекулы газа, находящегося в поле тяготения Земли.

Выясним зависимость давления атмосферы от высоты над поверхно­стью Земли. Допустим, на поверхности Земли (h = 0) давление атмосфе­ры P 0 . На высоте h оно равно P. При увеличении высоты на dh давление уменьшится на dP:

dP = - ρgdh (9.49)

[ρ - плотность воздуха на данной высоте, ρ = mn 0 , где m - масса моле­кулы, n 0 - концентрация молекул].

Используя соотношение P = n 0 kТ, получаем

Полагая, что на некоторой высоте h Т = соnst, g = соnst, разделяя пе­ременные, интегрируем выражение (9.50):

Получаем

(9.51) - барометрическая формула .

Барометрическая формула показывает зависимость давления газа от высоты над поверхностью Земли.

Если учесть, что концентрация молекул воздуха в атмосфере определяет дав­ление, то формулу (9.51) можно записать в виде

Из формулы (9.52) следует, что с понижением температуры число частиц на высоте, отличной от нуля, убывает и при Т = 0К обращается в нуль, т. е. при 0К все молекулы расположились бы на земной поверх­ности.

Так как потенциальная энергия молекул на различной высоте раз­лична и на высоте h определяется по формуле где Е П = mgh, то [см.

- закон Больцмана , показывающий распределение участвующих в теп­ловом движении молекул в потенциальном поле сил, в частности в поле силы тяжести.

Методика решения задач

В задачах данного типа используют свойства распределения Максвелла и Больцмана.

Пример 3.3. Определите среднюю арифметическую скорость <υ˃ молекул идеального газа, плотность которого при давлении 35 кПа составляет 0,3 кг/м 3 .

Дано: Р=35кПа=35∙10 3 Па; ρ=0,3 кг/м 3 .

Найти : <υ˃ .

Решение: Согласно основному уравнению молекулярно-кинетической теории идеальных газов,

где n – концентрация молекул; m 0 - масса одной молекулы; кв ˃ .- средняя квадратичная скорость молекул.

Учитывая, что , а, получаем

Так как плотность газа

где m – масса газа; V - его объём; N - число молекул газа, уравнение (1) можно записать в виде

или . Подставляя это выражение в формулу (2), находим искомую среднюю арифметическую скорость:

Ответ: <υ˃=545 м/с.

Пример 3.5. Найти относительное число газа, скорость которого отличается не более чем на δη = 1% значения средней квадратичной скорости.

Дано: δη = 1%.

Найти :

Решение В распределении Максвелла

подставим значение

; δυ = υ кв δη.

Относительное число молекул будет

Ответ :

Пример 3.6. При какой температуре газа число молекул со скоростями в заданном интервале υ, υ + dυ будет максимальной? Масса каждой молекулы m.

Для нахождения искомой температуры необходимо исследовать функцию распределения Максвелла на экстремум .

Пример 3.7. Вычислить наиболее вероятную, среднюю и среднюю квадратичную скорости молекул идеального газа, у которого при нормальном атмосферном давлении плотность ρ = 1кг/м 3 .

Умножив числитель и знаменатель в подкоренных выражениях (3.4) на число Авогадро N а, получим следующие формулы для скоростей:

Запишем уравнение Менделеева-Клапейрона, введя в него плотность

Определим отсюда величину и, подставив её в выражения, определяющие скорость молекул, получим:

Пример 3.4. Идеальный газ с молярной массой M находится в однородном поле тяжести, ускорение свободного падения в котором g. Найти давление газа как функцию высоты h, если при h = 0 давление Р = Р 0 , а температура меняется с высотой как T = T 0 (1 - α·h), где α – положительная постоянная.

При увеличении высоты на бесконечно малую величину давление получает приращение dP = - ρgdh, где ρ - плотность газа. Знак минус появился, так как с увеличением высоты давление уменьшилось.

Поскольку рассматривается идеальный газ, плотность ρ может быть найдена из уравнения Mенделеева-Клапейрона:

Подставим значение плотности ρ и температуры Т, получим разделяя переменные:

Интегрируя это выражение, находим зависимость давления газа от высоты h:

Так как при h = 0 Р = Р 0 получаем значение постоянной интегрирования С = Р 0 . Окончательно функция Р(h) имеет вид

Необходимо отметить, что, так как давление является величиной положительной, полученная формула справедлива для высот .

Пример. Французский физик Ж.Перрен, наблюдал под микроскопом изменение концентрации взвешенных в воде (ρ=1г/см 3 ) шариков гуммигута (ρ 1 =1,25г/см 3 ) с изменением высоты, экспериментально определил постоянную Авогадро. Определите это значение, если температура взвеси Т=298К, радиус шариков =0,21 мкм, а при расстоянии между двумя слоями Δ h =30мкм число шариков гуммигута в одном слое в два раза больше, чем в другом.

Дано: ρ=1г/см 3 =1000кг/м 3 ; ρ=1,25 г/см 3 =1250кг/м 3 ; Т=280 К; r =0,21мкм=0,21∙10 -6 м; Δ h =30мкм=3∙10 -5 м; .

Найти : N A .

Решение. Барометрическую формулу

Используя уравнение состояния P=nkT, можно преобразовать для высот h 1 и h 2 к виду

и ,

где n 0 , n 1 и n 2 - соответственно концентрация молекул на высоте h 0 , h 1 и h 2 ; М – молярная масса; g- ускорение свободного падения; R- молярная газовая постоянная.

Прологарифмировав выражение (1), получим

Масса частицы ; m=ρV=ρπr 3 . Подставив эти формулы в (2) и учитывая поправку на закон Архимеда, получим

Откуда искомое выражение для постоянной Авогадро

Ответ: N A =6,02∙10 23 моль -1 .

Пример. Какова температура Т азота, если средняя длина свободного пробега <ℓ˃ молекул азота при давлении Р=8кПа составляет 1мкм. Эффективный диаметр молекул азота d =0,38нм. .

Дано: <ℓ˃ =1мкм=1∙10 -6 м; Р=8кПа=8∙10 3 Па; d=0,38нм=0,38∙10 -9 м;

Найти : Т.

Решение. Согласно уравнению состояния идеального газа

где n – концентрация молекул; k - постоянная Больцмана.

откуда . Подставив эту формулу в выражение (1), найдём искомую температуру азота

Ответ: Т=372 К.

Пример. При температуре Т=280 К и некотором давлении средняя длина <ℓ 1 ˃ свободного пробега молекул равна 0,1 мкм. Определите среднее число столкновений молекул в 1с, если давление в сосуде уменьшить до 0,02 первоначального давления. Температуру считать постоянной, а эффективный диаметр молекулы кислорода принять равным 0,36нм.

Дано: Т=280 К; <ℓ 1 ˃ =0,1мкм=0,1∙10 -6 м; М=32∙10 -3 кг/моль; ; d=0,36нм=0,36∙10 -9 м;

Найти : .

Решение. Среднее число . молекулы к средней длине её свободного пробега <ℓ 2 ˃. при том же давлении:

где средняя скорость молекул определяется по формуле

где R – молярная газовая постоянная; М – молярная масса вещества.

Из формул иP=nkT следует, что средняя длина свободного пробега молекул обратно пропорциональна давлению:

откуда . Подставив это выражение в формулу (1) и учитывая (2), получаем искомое среднее число столкновений молекул в 1с:

Ответ:

Дано: P =100мкПа=10 -4 Па; r =15см=0,15 м; T=273 К; d=0,38нм=0,38∙10 -9 м.

Найти :

Решение. Вакуум можно считать высоким, если средняя длина свободного пробега молекул газа гораздо больше линейных размеров сосуда, т.е. должно выполняться условие

Средняя длина свободного пробега молекул газа

(учли P=nkT).

Вычисляя, получаем =58,8 м, т.е 58,8 м ˃˃0,3 м.

Ответ: да, вакуум высокий.

Распределение Больцмана

В барометрической формуле в отношении M/R разделим и числитель и знаменатель на число Авогадро .

Масса одной молекулы,

Постоянная Больцмана.

Вместо Р и подставим соответственно. (см. лекцию №7), где плотность молекул на высоте h , плотность молекул на высоте .

Из барометрической формулы в результате подстановок и сокращений получим распределение концентрации молекул по высоте в поле силы тяжести Земли.

Из этой формулы следует, что с понижением температуры число частиц на высотах, отличных от нуля, убывает (рис. 8.10), обращаясь в 0 при Т=0 (при абсолютном нуле все молекулы расположились бы на поверхности Земли). При высоких температурах n слабо убывает с высотой, так

Следовательно, распределение молекул по высоте является и распределением их по значениям потенциальной энергии .

(*)

где плотность молекул в том месте пространства, где потенциальная энергия молекулы имеет значение ; плотность молекул в том месте, где потенциальная энергия равна 0.

Больцман доказал, что распределение (*) справедливо не только в случае потенциального поля сил земного тяготения, но и в любом потенциальном поле сил для совокупности любых одинаковых частиц, находящихся в состоянии хаотического теплового движения .

Таким образом, закон Больцмана (*) даёт распределение частиц, находящихся в состоянии хаотического теплового движения, по значениям потенциальной энергии . (рис. 8.11)

Рис. 8.11

4. Распределение Больцмана при дискретных уровнях энергии .

Полученное Больцманом распределение относится к случаям, когда молекулы находятся во внешнем поле и их потенциальная энергия может применяться непрерывно. Больцман обобщил полученный им закон на случай распределения, зависящего от внутренней энергии молекулы.

Известно, что величина внутренней энергии молекулы (или атома) Е может принимать лишь дискретный ряд дозволенных значений . В этом случае распределение Больцмана имеет вид:

где число частиц в состоянии с энергией ;

Коэффициент пропорциональности, который удовлетворяет условию

где N – полное число частиц в рассматриваемой системе.

Тогда и в результате для случая дискретных значений энергии распределение Больцмана

Но состояние системы в этом случае термодинамически неравновесное.

5. Статистика Максвелла-Больцмана

Распределение Максвелла и Больцмана можно объединить в один закон Максвелла-Больцмана, согласно которому число молекул, компоненты скорости которых лежат в пределах от до , а координаты в пределах от x, y, z до x+dx, y+dy, z+dz , равно

где , плотность молекул в том месте пространства, где ; ; ; полная механическая энергия частицы.

Распределение Максвелла-Больцмана устанавливает распределение молекул газа по координатам и скоростям при наличии произвольного потенциального силового поля .

Примечание : распределение Максвелла и Больцмана являются составными частями единого распределения, называемого распределением Гиббса (этот вопрос подробно рассматривается в спецкурсах по статической физике, и мы ограничимся только упоминанием этого факта).

Вопросы для самоконтроля.

1. Дайте определение вероятности.

2. Каков смысл функции распределения?

3. Каков смысл условия нормировки?

4. Запишите формулу для определения среднего значения результатов измерения величины x с помощью функции распределения.

5. Что представляет собой распределение Максвелла?

6. Что такое функция распределения Максвелла? Каков ее физический смысл?

7. Постройте график функции распределения Максвелла и укажите характерные особенности этой функции.

8. Укажите на графике наиболее вероятную скорость . Получите выражение для . Как изменяется график при повышении температуры?

9. Получите барометрическую формулу. Что она определяет?

10. Получите зависимость концентрации молекул газа в поле силы тяжести от высоты.

11. Запишите закон распределения Больцмана а) для молекул идеального газа в поле силы тяжести; б) для частиц массой m, находящихся в роторе центрифуги, вращающейся с угловой скоростью .

12. Объясните физический смысл распределения Максвелла-Больцмана.

Лекция №9

Реальные газы

1. Силы межмолекулярного взаимодействия в газах. Уравнение Ван-дер-Ваальса. Изотермы реальных газов.

2. Метастабильные состояния. Критическое состояние.

3. Внутренняя энергия реального газа.

4. Эффект Джоуля – Томсона. Сжижение газов и получение низких температур.

1. Силы межмолекулярного взаимодействия в газах

Многие реальные газы подчиняются законам идеальных газов при нормальных условиях . Воздух можно считать идеальным до давлений ~ 10 атм . При повышении давления отклонения от идеальности (отклонение от состояния, описываемого уравнением Менделеева - Клайперона) возрастают и при p=1000 атм достигают более 100%.

и притяжения , а F – их результирующая . Силы отталкивания считаются положительными , а силы взаимного притяжения – отрицательными . Соответствующая качественная кривая зависимости энергии взаимодействия молекул от расстояния r между центрами молекул приведена на

рис. 9.1б). На малых расстояниях молекулы отталкиваются, на больших притягиваются. Быстро возрастающие на малых расстояниях силы отталкивания означают грубо говоря, что молекулы как бы занимают некоторый определённый объём, дальше которого газ не может быть сжат .