Органы чувств животных которых нет у человека. Необычные органы чувств у животных - мозаика странностей

Мир животного определяется его ощущениями. Часто преобладающую роль играет какой-то один орган чувств, но и другие непрерывно забрасывают хозяина градом информации.

Уши совы, бесшумно летящей над лугом в лунную ночь, чутко улавливают каждый шорох в траве, а от ее зорких глаз не скроется ни малейшее движение. Мышь, прощупывая дрожащими усиками дорогу в густом разнотравье, отыскивает по запаху пищу и все время вслушивается в ночную тишь - не донесется ли легкий шелест совиных крыльев. От органов чувств полностью зависит жизнь и мыши, и совы. Если подведет слух или зрение, то одной грозит мгновенная гибель, другой - голодная смерть. Так или иначе, потомства им больше не вывести. Жизнь новому поколению дадут лишь те, кто сумеет выжить, - совы и мыши с обостренными до предела органами чувств, а их потомство унаследует эти качества. Так из поколения в поколение оттачиваются в борьбе за выживание чувственные восприятия хищника и жертвы. В результате эволюционного процесса совы и мыши стали обладателями едва ли не самых высокоразвитых органов чувств во всем животном царстве.

Для нас с вами нет более важного чувства, чем зрение, а некоторые животные прекрасно обходятся без него, живя в темном мире запахов и прикосновений. Впрочем, большинство живых существ реагирует на свет в той или иной форме. Скажем, у земляного червя нет глаз, но все его тело ощущает солнечный свет. Поддетый лопатой червяк тотчас почувствует, что оказался на свету, и поспешит зарыться в землю, подальше от голодных птичьих глаз и жарких солнечных лучей. У животных световое восприятие сосредоточено главным образом в группах особых светочувствительных клеток, т. е. в глазах. Самые незатейливые по строению глаза у личинок насекомых, например, у гусениц. Они ощущают свет и движущиеся тени потенциальных врагов, но ничего более. Каждый простой глаз состоит из группы светочувствительных клеток, или сетчатки, расположенной позади неподвижного хрусталика, который служит ей защитой и фокусирует на ней световые лучи.

Сложные глаза

Сложные фасеточные глаза взрослого насекомого состоят из множества простых глазков. Так, глаз обычной пчелы включает примерно 5000 фасеток, каждая из которых охватывает свое крохотное поле зрения и преобразует его в примитивное изображение. Из этих бесчисленных элементов и складывается мозаичная картина окружающего мира.

Однако сложные глаза с их огромным полем обзора и отличной цветочувствительностью все же не дают четкого изображения предмета. В этом смысле куда более совершенны однокамерные глаза позвоночных животных (рыб, земноводных, рептилий, птиц и млекопитающих) и таких высокоразвитых беспозвоночных, как кальмары и каракатицы.

В более высокоразвитом глазу знакомая нам структура "хрусталик-сетчатка" усовершенствована и позволяет получать более четкое изображение. Гораздо шире и разнообразнее набор светочувствительных клеток и в самой сетчатке. У наземных животных свет проникает в глаз через роговицу - выпуклое "окошко", образующее переднюю стенку глаза, - и хрусталик, гибкую линзу, способную изменять угол преломления. Благодаря этому меняется фокусировка, и независимо от расстояния на сетчатку попадает четкое изображение предмета. Результатом становится превосходная острота зрения, позволяющая таким птицам, как сокол-сапсан, замечать мелкую добычу с высоты до 100 м и со снайперской точностью поражать жертву.

Отличительной чертой большинства хищников является и бинокулярное зрение. Два прямо и близко посаженных глаза видят чуть разные изображения одного и того же предмета, которые, совмещаясь в мозгу, дают ощущение глубины. Способность безошибочно определять дистанцию до жертвы имеет огромное значение для хищных птиц.

Зато их потенциальной добыче - голубю - требуется круговой обзор, чтобы вовремя заметить врага. Поэтому его глаза расположены по бокам головы, расширяя угол зрения, но, не обеспечивая бинокулярного видения. Та же закономерность прослеживается и у млекопитающих - сравните, например, волка и оленя.

Цветовосприятие

Цвет светового луча зависит от длины волны. Самые короткие световые волны, которые способен различать человек, - фиолетовые, самые длинные - красные. У некоторых животных, например, собак, цветовое зрение развито хуже, чем у нас, зато у других оно выходит далеко за пределы видимого спектра. Многие насекомые (бабочки, пчелы) реагируют на отраженные цветами ультрафиолетовые лучи, а некоторые змеи (удавы, гремучие змеи, питоны) "видят" инфракрасное излучение своей теплокровной жертвы, улавливая его особыми рецепторами в ямках на губе. С их помощью гремучая змея находит в кромешной темноте добычу, подбирается к ней и наносит меткий удар.

Осязание

Если зрение - это восприятие световых лучей, то осязание и слух - это механическая реакция сенсорных клеток на внешние раздражители при прямом контакте с твердыми телами, жидкостями или под давлением воздуха. Для некоторых животных осязание является главнейшим из всех чувств. Моржу, выкапывающему моллюсков из донного грунта, помогает ориентироваться в мутной воде не только нежная и чувствительная кожа на морде, но и "усы", состоящие из 450 с лишним волосков. Через сеть нервных волокон они передают в мозг почти зримый образ морского дна. Ту же функцию выполняют живописные усы других млекопитающих и волоски у многих других живых существ. Скажем, насекомые ничего не ощущают поверхностью своего хитинового панциря, зато отлично осязают окружающие предметы тонкими волосками, проросшими сквозь кутикулу. У других животных эту функцию выполняют нервные окончания, расположенные в особо чувствительных участках кожи. Так, у приматов самой чувствительной тактильной зоной являются кончики пальцев, а у слона - кончик хобота. Осязательные рецепторы улитки сосредоточены на кончиках гибких рожек, а у болотных птиц вроде кроншнепа - на кончике длинного клюва.

Боковая линия

У рыб осязательные рецепторы собраны в боковых линиях по обеим сторонам тела. Боковая линия - это канал, тянущийся под кожей от головы до хвоста, снабженный рядом осязательных рецепторов и открывающийся наружу крохотными равномерно расположенными отверстиями. При движении рыбы в воде малейшие колебания наружного давления проникают в отверстия боковой линии и гидравлически передаются вдоль всего канала, стимулируя нервные окончания.

Благодаря этому рыба отлично ощущает свое непосредственное окружение. Слишком близко подплыв в темноте к препятствию, она почувствует повышение давления и свернет в сторону. При приближении другого предмета - скажем, врага - его удаленность, величину, направление движения и даже форму можно определить по волнам, которые расходятся от него в плотной водной среде.

Слух

Принцип действия органов слуха примерно тот же, что и боковой линии. Звуковые волны - это, по сути, те же колебания давления воздуха или воды. Так, издаваемый движением крыльев комариный писк представляет собой 500 колебаний давления (циклов) в секунду, т. е. его частота равна 500 герц. Чтобы ухо уловило эти колебания, звуковые волны должны попасть в слуховой канал, снабженный тонкой мембраной - барабанной перепонкой. Она вибрирует в резонанс с колебаниями внешнего давления, и эти вибрации передаются группе рецепторов, скрытых во внутреннем ухе.

У млекопитающих слуховые нервы расположены в извилистой конической трубке - улитке. Суженный конец этой трубки реагирует на высокие частоты (высокие ноты), а широкий - на низкие. Как и в случае со зрением, разные животные воспринимают различные диапазоны звуков. Кит слышит низкочастотные звуковые сигналы, доносящиеся за сотни километров в океанских водах. Зато летучая мышь улавливает звуки частотой до 100 тыс. герц. Верхний предел звуковосприятия человека составляет всего 20 тыс. герц.

Эхолокация

Летучая мышь по-своему использует повышенную чувствительность к высоким частотам. Большинство этих зверьков ориентируется в пространстве по звуку, непрерывно издавая высокочастотные пощелкивания и определяя расстояние до препятствий и добычи по отраженному сигналу. Чем выше частота импульсов, тем эффективнее работает система.

Любопытно, что уши большинства мотыльков настроены так, что чутко улавливают эти ультразвуковые импульсы. Летучие мыши - их главные враги, так что чем раньше их услышишь, тем лучше.

У некоторых животных нет ушей как таковых, но они ощущают вибрации, передаваемые твердыми материалами. Змея совершенно глуха с анатомической точки зрения, но кости ее челюсти и черепа улавливают легчайшие сотрясения почвы.

Химические чувства

Мы редко осознаем, что воздух полон мельчайших химических частиц, которые для некоторых животных не менее информативны, чем изображения или звуки. Змея, охотящаяся в траве, непрерывно пробует воздух раздвоенным языком, который подает уловленные частицы к особому рецептору в верхнем нёбе, называемому органом Якобсона. Анализируя их химический состав, змея безошибочно выслеживает жертву.

Собака тоже принюхивается к воздуху (и предметам), втягивая носом витающие химические частицы. Для нее запах является главной характеристикой окружающего мира, и даже со своими сородичами она общается с помощью запахов, оставляя свои "визитные карточки" у каждого фонарного столба.

Феромоны

Запах способен передавать сильные сексуальные сигналы, и многие самки пользуются запахами для привлечения самцов. Эти химические вещества, называемые феромонами, часто разносятся ветром и улавливаются самцами на огромных расстояниях. Так, самка тутового шелкопряда вырабатывает феромон бомбикол, а самец улавливает его похожими на антенны рецепторами. Они чутко настроены на строго определенное вещество, и, едва ощутив его присутствие в воздухе, насекомое устремляется к источнику запаха.

С механизмом обоняния во многом схож механизм вкусовых ощущении - с той разницей, что химические частицы растворены в жидкостях и ощущаются только во рту. Обостренное вкусовое восприятие встречается у самых неожиданных животных, служа надежной защитой от ядовитой пищи. Так, паук часто хватает и парализует неподходящую добычу, но, едва отведав ее, тотчас выбрасывает прочь.

Электромагнитные чувства

О сенсорных системах некоторых животных мы имеем весьма туманное представление. Известно, что акула руководствуется, прежде всего, острым обонянием. Но на близком расстоянии она находит охваченную страхом жертву по слабым электросигналам ее нервных волокон. Их улавливает "батарейка" из заполненных студенистой массой рецепторов в голове акулы, причем у некоторых мелких видов эти органы даже могут генерировать беспорядочные электрические разряды, сбивающие с толку крупных акул.

По некоторым признакам, акулы пользуются этой системой и для ориентации в океане, каким-то образом замыкаясь на магнитное поле Земли (магнетизм и электричество - тесно связанные явления). Аналогичные органы, по-видимому, служат навигационными приборами китам и перелетным птицам.

Внутренние чувства

Животное не только реагирует на окружающий мир. Органы чувств нужны ему и для того, чтобы управлять собственным телом - сохранять равновесие, ориентироваться в пространстве, ощущать боль, голод, усталость, страх и многое другое.

Многие функции выполняются автоматически, без осознанного анализа. Вне осознанного контроля действуют и некоторые механизмы восприятия внешнего мира. Мы все еще не знаем, как обрабатывается поступающая извне информация. Впрочем, судя хотя бы по мощности требуемых для этого компьютеров, нетрудно представить, какие обширные участки мозга заняты расшифровкой сумбурного потока сенсорных сигналов, сопоставляя их и связывая в целостную картину окружающего мира - или того, чем этот мир представляется нашим органам чувств.

«Качества существуют лишь постольку, поскольку принято считать сладкое - сладким, горькое - горьким, горячее - горячим, а цвет - цветным. однако реально существуют лишь атомы и пустота». Демокрит, 460-370 гг. до н.э. «Тетралогии»

Ночное зрение. Огромные глаза тонкого лори помогают ему ориентироваться, передвигаясь в полной темноте по ночному лесу. Лори - ночные животные, и в поисках добычи они полагаются главным образом на обоняние. Для передачи информации сородичам они используют пахучие метки и звуки.

Глаз-разведчик. Наши знания о природе света свидетельствуют, что глаза слепня не различают тонкие детали, но, поскольку работа головного мозга изучена недостаточно, мы не можем воспроизвести то, что видит эта муха.

Органы чувств животных не похожи на человеческие. Одни животные видят свет, невидимый для нас. Другие слышат звуки, которые не воспринимает наше ухо. Некоторые животные чувствительны к магнитному полю Земли и к электрическому полю. Дельфины воспроизводят трехмерную картину окружающего мира, гораздо более детальную, чем видит человек, однако при этом они используют эхолокаторы, улавливающие отражения звуков, издаваемых ими самими. Картина «атомов и пустоты», создаваемая дельфином путем преобразования отраженных эхосигналов, почти наверняка сильно отличается от той, которая создается у нас с помощью глаз и головного мозга. Вероятно, мы никогда не сможем воспринимать мир таким, каким его видит дельфин, но, изучая поведение животных, мы можем выяснить, на какие раздражители они реагируют и как их органы чувств помогают им выжить. Демокрит был бы удивлен такими скромными успехами в изучении жизни животных.

Охота по слуху. Эта летучая мышь - подковонос - во время охоты издает звуки, которые, отражаясь от летающих насекомых, помогают ей определить их местонахождение. Один звук, повторенный 10 раз в секунду, позволяет мыши обнаружить насекомое. «Выйдя на жертву», она издает глиссандо - последовательность сливающихся звуков, что помогает сделать точный бросок.

Органы чувств змеи. Габонская гадюка, или кассава, «видит» в темноте, улавливая изменения температуры при помощи термодатчиков ямок на морде. Уши воспринимают только низкие частоты. Органом обоняния служит раздвоенный язык, которым змея «пробует» воздух.

Только обоняние и осязание. У морских звезд нет ни глаз, ни ушей; ползая по морскому дну в поисках пищи, они полагаются на осязание и обоняние.

Костный купол. Куполообразный череп кита-белухи - часть его эхолокационной передающей системы, служащей линзой, фокусирующей звуки в узкий пучок.

Еще интересные статьи


Теперь мы кратко рассмотрим некоторые из сенсорных систем и их функционирование у разных животных. Мы коснемся различных сенсорных модальностей и приведем ряд интересных примеров их функции. Для более полного знакомства с сенсорными системами животных следует обратиться к обзору Хесса и помещенным в нем ссылкам.

Зрение

Многие простейшие и кишечнополостные обладают только диффузной чувствительностью к свету, при которой глазок способен различать лишь общий уровень освещенности У более сложных организмов развились самые разнообразные светочувствительные органы. Сложные глаза многих насекомых состоят из большого числа единиц, называемых омматидиями, которые ориентированы параллельно друг другу и имеют на одном конце светочувствительный участок, а на другом – афферентное волокно, идущее в центральную нервную систему (рис 103) Глаза головоногих моллюсков (таких, как осьминоги) и позвоночных представляют собой замечательный пример конвергентной эволюции У этих животных глаз устроен наподобие фотокамеры и снабжен линзой, диафрагмой и светочувствительным слоем.

Рис. 10.3 Структура сложного глаза насекомого, показано также строение омматидия

Животные сильно различаются по остроте зрения, т. е. по способности обнаруживать стимулы малых размеров. В то время как грызуны рода Peromyscus и морские львы, о которых говорилось выше, могут различать углы величиной примерно 5, человек видит угол, равный Г. Острота зрения некоторых птиц, например соколов, по видимому, в несколько раз выше, чем у человека. Белые крысы не различают объектов, видимых под углом менее 1° Удивительно, что млекопитающее с такой низкой остротой зрения стало объектом многочисленных психологических исследований, посвященных зрительным дифференцировкам

Диапазон эффективных длин волн неодинаков у разных животных, причем одни из них чувствительны к ультрафиолетовому свету, а другие нечувствительны к красной области спектра Способность различать разные длины волн (цветовое зрение) также варьирует Используя метод «шахматной доски», суть которого состоит в том, что медоносные пчелы должны прилетать к кормушкам, расположенным на квадратах разного цвета, фон Фриш показал, что пчелы могут различать четыре группы цветов Наличие цветового зрения было показано у некоторых видов головоногих моллюсков, рыб, амфибий, рептилий, птиц и млекопитающих У большинства грызунов и зайцеобразных (кролики и др.), исключая белок, по-видимому, нет цветового зрения У дневных животных оно обычно развито лучше, чем у ночных.

Классический пример исследования органов чувств представляет собой работа Леттвина и др., озаглавленная «Что говорит глаз лягушки ее мозгу». Эти исследователи вводили в мозг лягушки тонкие металлические электроны, с помощью которых регистрировали возникавшую в сетчатке электрическую активность, а затем помещали в поле зрения животного различные раздражители (рис. 10.4). При этом было обнаружено, что зрительная система лягушки содержит клетки пяти типов:


Рис. 10.4 Схематическое изображение установки для исследования зрительной системы лягушки. Лягушка с вживленными электродами видит перед собой половину внутренней стороны цилиндра С помощью магнита, передвигаемого по наружной стороне цилиндра и невидимого для животного, в поле зрения лягушки можно перемещать мелкие объекты

Тип 1. Детекторы неподвижной границы. Эти нейроны максимально реагируют на края мелких объектов, которые входят в поле зрения и остаются неподвижными.

Тип 2. Детекторы закругленного края Эти нейроны дают максимальную реакцию на маленькие темные пятна с закругленными краями, перемещающиеся к центру поля зрения.

Тип 3. Детекторы движущейся границы Эти нейроны реагируют в наибольшей степени в то время, когда граница освещенности то появляется, то исчезает из поля зрения

Тип 4. Детекторы снижения освещенности. Эти нейроны реагируют в максимальной степени, когда интенсивность света снижается.

Тип 5. Детекторы темноты Активность этих нейронов обратно пропорциональна интенсивности света – чем ярче свет, тем слабее они реагируют.

В указанной работе описано несколько интересных особенностей зрительной системы лягушки Часто исходят из предположения, что функция органа чувств, в данном случае сетчатки, заключается в получении сенсорного входного сигнала и передаче его относительно верного образа в мозг, где информация обрабатывается Однако ясно, что это не так У лягушки сетчатка играет важную роль в обработке информации, которая поступает в мозг уже в сильно переработанной форме.

Интерес исследователей сосредоточился на детекторах закругленного края, получивших шутливое название «детекторы букашек» Так как в сетчатке лягушки есть группа нейронов, избирательно чувствительных к таким стимулам, лягушка, по-видимому, может осуществлять очень быстрые ответные реакции, необходимые при ловле летающих насекомых. Подобная сенсорная система должна не только обеспечивать максимальную скорость реакций, но и отфильтровывать несущественную информацию, предотвращая «бомбардировку» мозга ненужными сведениями. Это достигается, разумеется, за счет потери гибкости: информация, утраченная в сетчатке, никогда уже не попадает в мозг, так что зрительная система лягушки лишена той гибкости в использовании зрительного входа, которая свойственна, например, млекопитающим.

Зрительная система функционирует в самых различных ситуациях, в том числе при поиске пищи, избегании хищников, исследовательской деятельности, а также в процессе регуляции циркадных ритмов. С точки зрения общественных отношений зрительные сигналы многих животных составляют важный аспект системы коммуникаций, особенно у дневных форм, живущих на открытых пространствах.

Слух

К слуховым относятся такие системы, которые избирательно реагируют на относительно высокочастотные вибрации, происходящие в разных средах, включая воздух и воду. Насекомые различают звуки с помощью довольно простых волосков (сенсилл), сложных тимпанальных органов, антенн и других приспособлений. У разных видов насекомых тимпанальные органы расположены в груди, конечностях или в основании крыльев. У позвоночных эволюция сложных слуховых систем начинается только на уровне рыб, и многие виды рыб, рептилий, птиц и млекопитающих обладают значительной способностью к слуховой рецепции. Птицы реагируют на высокочастотные звуки и локализуют звуки лучше, чем рыбы, амфибии и рептилии. Ухо млекопитающего характеризуется наличием ушной раковины (часто называемой просто ухом), тремя косточками в среднем ухе и закрученной улиткой

При изучении эволюции слуха у млекопитающих Хефнер и др. исследовали слуховую чувствительность опоссума, ежа, тупайи и галаго, применяя методику условнорефлектор-ного подавления реакции. Они пришли к выводу, что у большей части млекопитающих, за исключением гоминид, слуховые системы чувствительны к высоким частотам, по крайней мере до 32 кГц. Из 19 изученных ими видов только у шимпанзе и человека отсутствовала чувствительность к высоким частотам. Человек в большей степени, чем другие виды, чувствителен к тонам низкой частоты. Хефнер и др. сделали заключение, что «древние предки человека должны были подвергаться сильному и постоянно действующему давлению отбора на чувствительность слуховых систем к низким частотам».

Ночные бабочки имеют специальные адаптации для обнаружения и избегания приближающихся летучих мышей. Чтобы записать электрическую активность отдельных волокон в нервах, идущих от уха ночной бабочки, Рёдер и Трит перенесли на Массачусетские холмы около 120 кг оборудования. Они следили за этой активностью, усиливая выходные "сигналы и подавая их на громкоговоритель. Бабочки обнаруживали летучих мышей на расстоянии около 30 метров, проявляя таким образом более высокий уровень чувствительности по сравнению с летучими мышами и с самыми лучшими микрофонами, имевшимися в распоряжении Рёдера и Трита. Услышав издали летучую мышь, бабочка летит в противоположном направлении. Если при нападении летучая мышь оказывается совсем близко, бабочка применяет обманный маневр «ныряния», чтобы избежать хищника.

Главная функция слуховой системы заключается в обеспечении внутривидовой коммуникации. Мы уже обсуждали пример пения птиц. «Песни» китов-горбачей слышны на значительных расстояниях, причем отдельные их элементы длятся от 7 до 30 минут. Сверчки издают звуки, выполняющие разные функции, в том числе функции ухаживания и охраны территории. Проигрывая запись этих звуков, Улага-радж и Уокер привлекали к громкоговорителю медведок.

Благодаря развитию акустической техники нам открылась целая область «ультразвуковой коммуникации», недоступной для "человеческого уха. Ультразвуковая коммуникация свойственна грызунам и используется ими в разных случаях. Брукс и Бэнкс нашли, что у копытных леммингов ультразвуки издают и новорожденные детеныши, и взрослые зверьки (при спаривании, обнаружении хищника и в ходе агонистических столкновений) Выделено 6 типов ультразвуковых сигналов. У лабораторных крыс самец после эякуляции исполняет ультразвуковую «песню» частотой 22 кГц. Особое внимание было уделено ультразвуковым сигналам новорожденных. Новорожденные грызуны, по-видимому, производят ультразвуковые сигналы двух типов. Сигналы одного типа издаются при охлаждении и побуждают родителя отыскать и вернуть в гнездо выпавшего детеныша. Сигналы другого типа испускаются при необычной тактильной стимуляции и, по-видимому, заставляют взрослых особей прекращать грубое обращение с детенышем или агрессивную реакцию.

Интересная система коммуникации была описана у древесной лягушки Eleutherodactylus coqui. Каждый вечер от заката до полуночи самцы издают двусложный звук «кр-ки». Два слога этого сигнала имеют разное функциональное значение. Слог «кр» адресуется самцам и служит для регулирования территориальных отношений, тогда как слог «ки» – это часть. сигнала, привлекающая самок. Такие различия в функциональном назначении двух тонов этого звука отражают различия в области наибольшей слуховой чувствительности у обоих полов. Подобная половая дифференциация слуховой системы представляет собой еще один пример того, в какой степени сенсорная информация может обрабатываться уже на периферии и как она приспособлена для специфических функций.

Химические чувства

Общая химическая чувствительность, за которую ответственны относительно мало дифференцированные органы чувств, обнаруживается даже у самых примитивных животных. Вкус характеризуется большей чувствительностью, чем общее химическое чувство, и обычно функционирует по типу контактной рецепции. Органы обоняния – наиболее развитого химического чувства – реагируют на химические вещества, диффундирующие (часто в. очень низких концентрациях) от источника, удаленного от животного. Чувства вкуса и запаха дифференцированы у насекомых и имеются у большинства видов позвоночных. При исследовании химических чувств возникают трудности, связанные с подготовкой стимулов и контролем за их действием, а также с тем, что по сравнению с другими организмами человек обладает в целом более-низкой чувствительностью к химическим веществам.

Детье и его коллеги (см., например, Dethier, 1971) провели многочисленные исследования вкусовой чувствительности падальной мухи. У этой мухи точно подсчитано число вкусовых волосков: 245 – 253 из них расположены на разных частях ротового аппарата, 3120 – на шести конечностях и 65 – 67 на внутренней поверхности рта. Возможности вкусовых ощущений у всех этих волосков почти одинаковы. Каждый волосок иннервируется пятью чувствительными нейронами. Один из этих пяти нейронов реагирует на механические раздражения; остальные четыре – вкусовые рецепторы, один из которых предназначен для воды, один – для сахара и два – для соли. Когда насекомое встречает сложное вещество, между рецепторами разных типов возникают значительные периферические взаимодействия. Читателю, который хотел бы познакомиться с хорошо написанным и увлекательным рассказом о первом этапе исследовательской работы Детье и о «закулисной жизни» в науке, мы советуем посвятить вечер книге Детье «Познать муху».

У многих видов змей новорожденные детеныши, еще не получавшие пищи, реагируют молниеносным движением языка и атакующим движением тела на водные экстракты из кожи мелких животных. Межвидовые различия в такой реактивности соответствуют пищевым предпочтениям этих видов.

Хорошо известно, что лососи возвращаются для.размножения в ту реку, где они появились на свет. Нередко такие миграции связаны с преодолением значительных трудностей, так как рыбам приходится плыть против течения, через плотины, а также через места, населенные хищниками. Каким же образом лосось определяет, в какую реку ему надо вернуться? Данные, свидетельствующие о химической природе этого выбора, представляются достаточно убедительными. Шольц и др. провели на молодых лососях эксперимент по «запечатлению» химических веществ, которые впоследствии были добавлены в воду нескольких рек, впадающих в озеро Мичиган. Было показано, что такое раннее химическое «запечатление», под влиянием которого рыба выбирает соответствующую реку, действует в течение длительного времени.

Феромоны. Феромоны – это химические сигналы, с помощью которых осуществляется обмен информацией между разными особями одного вида (внутривидовая коммуникация). Их следует отличать от алломонов, которые служат сигналами при межвидовом общении, и гормонов – химических веществ, связывающих между собой разные органы одного организма, а также от других химических стимулов, не выполняющих коммуникативной функции (например, таких, которые связаны с выбором пищи и место-обитания). Обычно различают две главные категории феромонов (см., например, Bronson, 1971). Сигнализирующие феромоны оказывают более или менее быстрое воздействие на поведение животного-реципиента. Напротив, запускающие феромоны. включает гормональную активность, которая внешне – в виде изменений поведения – может проявиться только позднее.

Первые исследования по феромонам насекомых были обобщены Уилсоном. У медоносной пчелы имеется 11 различных желез, секретирующих феромоны. Пожалуй, самый наглядный пример феромона насекомых – это половой аттрактант тутового шелкопряда (Bombyx mori). Антенны самца настолько чувствительны к нему, что для запуска нервного импульса достаточно всего одной молекулы полового аттрактанта (бомбикола), выделяемого самкой. Если же в течение одной секунды генерируется примерно 200 импульсов, то самец начинает искать полового партнера, двигаясь против ветра. В последнее время выделено и идентифицировано множество феромонов насекомых.

Существует немало хороших обзоров по феромонам млекопитающих (например, Gleason, Reynierse, 1969; Eisenberg, Kleiman, 1972; Thiessen, Rice, 1976). Источниками феромонов у разных животных могут быть кал и моча, а также секреты огромного числа желез, расположенных на различных участках тела. Феромоны распространяются при нанесении их в качестве метки на те или иные предметы, тело партнера по группе или собственное тело, а также при их выделении в воздух. У разных животных феромоны передают информацию разного содержания, в том числе сигналы о принадлежности данного животного к тому или иному виду, расе и полу, а также о его репродуктивном статусе; с помощью феромонов животные идентифицируют отдельных особей, их возраст и настроение. Феромоны воздействуют на репродуктивное (половое или материнское) и другие формы общественного поведения (избегание контактов и подчинение, агрессивность и доминирование а также маркировка запахом).

Три классических эффекта, обусловленных воздействием феромонов на репродуктивное поведение мышей, получили свои названия по описавшим их авторам; Эффект Ли – Бута. В норме астральный цикл домовой мыши длится 4 – 5 дней. Если самок содержат группами, регулярная цикличность у них прекращается и обнаруживается спонтанная «ложная беременность». В этом явлении участвуют феромоны.

Эффект Уиттена. Если самца мыши или его экскременты помещают в клетку к самкам, то это вызывает у них синхронизированные эстральные циклы с пиком на третью ночь после появления стимула.

Эффект Брюса. Если самок, уже спарившихся с одним самцом, подсадить к другому или воздействовать на них его запахом, то у многих из них происходит «блокирование беременности», т е. ее прекращение вследствие блокады имплантации оплодотворенной яйцеклетки в стенку матки. Есть некоторые данные в пользу того, что блокирование беременности может происходить и после имплантации.

Было показано, что в размножении млекопитающих играет роль множество других феромонов У хомячков влагалищные выделения оказывают возбуждающий эффект на самцов при спаривании. Феромоны влияют и на скорость полового созревания. Половое созревание самцов мыши ускоряется, если они содержатся вместе с другими самцами, а созревание самок ускоряется в присутствии самцов и замедляется в присутствии самок Все эти эффекты обусловлены феромонами (Vandenberg,. 1969, 1971а; Drickamer, 1974) Данные о возможной роли феромонов в спаривании у макаков-резусов весьма противоречивы. Есть сведения о синхронизации и подавлении менструальных циклов у женщин, что, возможно, связано с действием феромонов.

Материнский феромон у лактирующих крыс-самок секретируется в слепую кишку и выделяется вместе с ее содержимым при дефекации. Его функция состоит в привлечении новорожденных к матери и в синхронизации взаимодействия матери и детенышей.

Чтобы сравнить распределение мочевых меток доминантных и подчиненных самцов домовой мыши, разделенных проволочной перегородкой, пол клетки застилают фильтровальной бумагой, на которой остаются следы от мочи, а затем рассматривают ее в ультрафиолетовом свете. Доминантные самцы энергично маркируют мочой всю территорию клетки, тогда как подчиненные опорожняют мочевой пузырь только в нескольких местах.

Активные органы чувств

Активные сенсорные системы отличаются от рассмотренных выше тем, что организм здесь активно испускает энергию в той или иной форме и воспринимает объекты внешней среды на основе изменений возвращающихся к нему сигналов.

К наиболее известным из активных сенсорных систем относится система эхолокации летучих мышей (см., например. Griffin, 1958; Griffin et al., 1960; Simmons et al., 1975). Используя свои сонарные системы, летучие мыши способны определять размеры, форму, расстояние, направление и передвижение объектов Издаваемые ими звуки различаются в зависимости от вида животного и обстановки.

Проводя лабораторные исследования в помещениях разных размеров, Гриффин и др. установили, что летучие мыши рода Myotis могут в темноте поймать за одну минуту до 10 комаров или 14 плодовых мушек. В процессе охоты характеристики издаваемого летучей мышью звука меняются. На стадии поиска перед обнаружением насекомого звуковые импульсы повторяются каждые 50 или 100 миллисекунд (тысячных долей секунды). Когда же летучая мышь приближается к уже обнаруженному насекомому, происходит постепенное сокращение интервала между импульсами. На конечной стадии, когда летучая мышь находится в нескольких сантиметрах от насекомого, интервал между импульсами становится еще меньше, сокращаясь до 0,5 миллисекунды. Было также показано, что летучие мыши могут быстро летать по темной комнате, затянутой сетью проводов, не задевая за них.

Системы эхолокации были обнаружены у южноамериканских птиц гуахаро и дельфинов.

Многие виды электрических рыб способны определять местоположение объектов, используя для этого активную электрическую сенсорную систему. С помощью электрических органов вокруг тела рыбы создается электрическое поле Наличие объектов, проводящих электрический ток лучше или хуже, чем вода, определяется по возникающим искажениям этого поля (рис 10.5). В процессе эволюции пластиножаберных и костистых рыб (как пресноводных, так и морских) электрические органы возникали независимо друг от друга по меньшей мере шесть раз.


Рис. 10.5 Электрическое поле электрической рыбы в присутствии объекта с низкой проводимостью (А) и объекта с высокой проводимостью (Б) Объекты, отличающиеся по своей проводимости от воды, рыба обнаруживает по конфигурации тока, поступающего на электрорецепторы

У разных рыб эти органы расположены на различных участках тела, начиная от области вокруг глаз, как у рыбы-звездочета, и кончая хвостом, как у некоторых африканских рыб. Есть рыбы, которые испускают сильные электрические импульсы Пятисотвольтный удар электрического угря может оглушить лошадь. У других рыб ток настолько слаб, что человек может его обнаружить только с помощью приборов. Такие органы чувств функционируют в основном как сенсорные системы. Лисман и Мэчин показали, что электрические рыбы различают предметы только по их электрической проводимости. В то время как у одних видов частота разрядов достаточно постоянна и изменяется главным образом в зависимости от температуры или в результате каких-либо помех, у других эта частота меняется в ответ на множество стимулов, в том числе циклическое изменение освещенности, наличие в воде каких-либо предметов или доступность пищи. У многих электрических рыб электрические сигналы выполняют также функцию коммуникации между особями, вероятно, как при репродуктивном, так и при агонистическом поведении.

Другие органы чувств

В поведении животных важную роль играет также множество других органов чувств. Ощущения боли, столь обычные для человека, трудно изучать у беспозвоночных. Разумно предположить,. что боль ощущается многими животными, поскольку они часто обнаруживают движения или звуки, свидетельствующие, по-видимому, о боли.

Тактильное чувство, или чувство прикосновения, – еще одна очень распространенная сенсорная модальность. Тактильная чувствительность варьирует у различных видов и в разных частях тела у особей данного вида. Нарушение тактильной чувствительности в области половых органов у крыс и кошек сильно мешает копуляции.

Проприоцепция – это способность определять относительное положение или перемещение частей тела. Сведения об ориентации тела в гравитационном поле Земли поступают от рецепторов равновесия, находящихся в вестибулярной системе, таких, как полукружные каналы млекопитающих. У членистоногих аналогичные функции выполняют разнообразные статоцисты.

Системы инфракрасной чувствительности используются разными видами змей для обнаружения теплокровной добычи. У ямкоголовых змей, включая гремучих, рецепторы инфракрасных лучей расположены между глазами и ноздрями, тогда как у представителей сем. Boidae, в том числе у боа-констриктора, они расположены более диффузно.

Хотя соответствующие рецепторы пока не идентифицированы, многие виды животных обладают чувствительностью к магнитному полю, например к магнитному полю Земли; исследование этого свойства в будущем обещает дать интересные результаты.



Необычные органы чувств у животных December 29th, 2017

Единственный путь познания мира проходит через наши чувства. Следовательно, органы чувств — это основа для осмысления происходящего вокруг нас. Принято считать, что у нас пять чувств, но в действительности их не менее девяти, а может и больше, в зависимости от того, что мы понимаем под словом «чувство».

Но, как бы там ни было, мир животных в этом плане готов посрамить любого из нас. Некоторые животные обладают способностями, которые присущи и людям, однако у зверей они значительно больше развиты, в связи с чем мы воспринимаем окружающую нас действительность абсолютно по-разному.

1. Электронный клюв

Поначалу описание утконоса - млекопитающего с утиным клювом, которое высиживает яйца, было воспринято как розыгрыш. Ну какой смысл в нелепом утином клюве?

Утконос питается мелкими беспозвоночными, живущими на дне рек и озер. Когда он ныряет, его глаза, ноздри и уши полностью закрыты — чтобы вода не попадала. Клюв утконоса буквально напичкан чувствительными сенсорами, способными улавливать даже самые слабые электрические поля, возникающие при движении живых организмов.

Наряду с улавливанием электрических полей, клюв утконоса также очень чувствителен к волнениям, возникающим в толще воды. Два этих чувства — электрорецепция и механорецепция, позволяют утконосу определять местоположение своей жертвы с поразительной точностью.

2. Эхолокация

Летучие мыши традиционно считаются слепыми по сравнению с обычными животными. Если глаза летучей мыши намного меньше, чем у других хищников, и далеко не такие зоркие, то только потому, что эти млекопитающие развили в себе способность охотиться при помощи звука.

Эхолокация летучих мышей заключается в умении пользоваться высокочастотными звуковыми импульсами и в способности улавливать отраженный сигнал, по которому они оценивают расстояние и направление до окружающих их предметов. При этом, вычисляя скорость насекомых, они оценивают свою жертву не только по времени, затраченному на прохождении импульса туда и обратно, но и учитывают эффект Допплера.

Будучи ночными животными и охотясь в основном на мелких насекомых, летучие мыши нуждаются в способностях, не зависящих от света. Люди обладают слабой рудиментарной формой этого чувства (мы можем понять, с какой стороны пришел звук), однако некоторые индивиды развивают эту способность в настоящую эхолокацию.

3. Инфракрасное зрение

Когда полиция преследует ночью преступников, или спасатели ищут людей под завалами, они часто прибегают к помощи устройств с инфракрасным изображением. Значительная часть теплового излучения объектов при комнатной температуре отображается в инфракрасном спектре, что может использоваться для оценки окружающих объектов на основе их температуры.

Некоторые виды змей, охотящихся на теплокровных животных, имеют на голове специальные углубления, позволяющие улавливать инфракрасное излучение. Даже после ослепления змея может продолжать безошибочно охотиться, пользуясь своим инфракрасным зрением. Примечательно, что на молекулярном уровне инфракрасное зрение змеи абсолютно не связано с обычным зрением видимого спектра, и должно развиваться отдельно.

4. Ультрафиолет

Многие люди согласятся с тем, что растения прекрасны. Однако, в то время как для нас растения — всего лишь украшение, они жизненно необходимы не только самим себе, но и насекомым, которые ими питаются. Цветы, которые опыляются насекомыми, «заинтересованы» в том, чтобы привлекать этих насекомых и помогать им находить правильный путь. Для пчёл внешний вид цветка может означать намного больше, чем способен разглядеть человеческий глаз.

Так, если посмотреть на цветок в ультрафиолетовом спектре, то можно увидеть скрытые узоры, предназначенные для того, чтобы указывать пчёлам нужное направление.

Пчёлы видят мир совсем не так как мы. В отличие от нас, они различают несколько спектров видимого света (голубой и зеленый), и имеют специальные группы ячеек для улавливания ультрафиолета. Один профессор ботаники как-то сказал: «Растения используют цвета, как шлюхи губную помаду, когда хотят привлечь клиента».

5. Магнетизм

Пчёлы также обладают второй чувственной хитростью, спрятанной в их маленьких пушистых рукавах. Для пчелы найти улей в конце целого дня непрерывных полетов — это вопрос жизни и смерти. Для улья, в свою очередь, очень важно, чтобы пчела помнила, где находится источник еды и могла найти к нему дорогу. Но, несмотря на то, что пчёлы могут многое, их вряд ли можно назвать невероятно одаренными умственными способностями.

Для навигации они должны использовать большой объем различной информации, в том числе источники, спрятанные в собственной брюшной полости. Мельчайшее колечко магнетических частиц, магнитных гранул железа, скрытых в пчелином животе, позволяют ей ориентироваться в магнитном поле Земли и определять своё местоположение.

6. Поляризация

Когда колебания световых волн происходят в одном направлении, это называется поляризацией. Люди не могут обнаружить поляризацию света без помощи специального оборудования, потому что светочувствительные клетки нашего глаза расположены случайным образом (неравномерно). У осьминога эти клетки упорядочены. А чем ровнее расположены клетки, тем ярче поляризационный свет.

Как же это позволяет осьминогу охотиться? Одна из лучших форм маскировки - быть прозрачным, и огромное количество морских обитателей практически невидимы. Однако под водной толщей происходит поляризация света, и некоторые осьминоги этим пользуются. Когда такой свет проходит сквозь тело прозрачного животного его поляризация меняется, осьминог это замечает — и хватает добычу.

7. Чувствительный панцирь

Люди обладают способностью ощущать кожей, потому что по всей её поверхности расположены чувствительные клетки. Если вы оденете защитный костюм, вы потеряете большую часть чувствительности. Это может доставить вам массу неудобств, однако для охотящегося паука это стало бы настоящей катастрофой.

Паку, как и другие членистоногие, имеют прочный экзоскелет, защищающий их тело. Но как же в этом случае они ощущают то, к чему прикасаются, как передвигаются, не ощущая ногами поверхности? Дело в том, что в их экзоскелете имеются мельчайшие отверстия, деформация которых позволяет определять оказываемые на панцирь силу и давление. Это дает паукам возможность ощущать окружающий их мир настолько сильно, насколько это только возможно.

8. Вкусовые ощущения

В большинстве сообществ принято держать язык за зубами. К несчастью, для сома это не представляется возможным, ведь все его тело, по сути, представляет собой сплошной язык, укрытый вкусовыми чувствительными клетками. Более чем 175 тысяч таких клеток позволяют ощутить весь спектр проходящих через них вкусовых оттенков.

Способность улавливать тончайшие вкусовые нюансы дает этим рыбам возможность не только почувствовать присутствие добычи на значительном расстоянии, но и точно определить её местоположение, причем это все происходит в очень мутной воде — типичной среде обитания сомов.

9. Слепой свет

Многие организмы, эволюционировавшие в тёмной среде обитания, имеют только рудиментарные, остаточные органы зрения, или даже полностью лишены глаз. В любой черной как смоль пещере от возможности видеть нет никакой пользы.

Пещерная рыба «Astyanax mexicanus» полностью утратила глаза, но взамен природа подарила ей возможность улавливать даже самые слабые изменения в освещении, которые только могут быть под скалистой толщей. Эта способность позволяет рыбке скрываться от хищников, так как особая шишковидная железа улавливает свет (а заодно и отвечает за чувство смены дня и ночи).

Эти рыбы имеют просвечивающееся тело, благодаря чему свет беспрепятственно проходит точно сквозь шишковидную железу, что помогает им найти укрытие.

10. Точечное матричное зрение

В живой природе мы можем встретить потрясающее разнообразие форм и видов глаз. Большинство из них состоят из линз, фокусирующих свет на светочувствительных клетках (сетчатке), которые проецируют изображение окружающего нас мира. Для правильной фокусировки изображения линзы могут изменять форму, как у человека, перемещаться вперед и назад, как у осьминога, и использовать огромное количество других способов.

Так, например, представитель вида ракообразных «Copilia quadrata» пользуется непривычным методом для отображения окружающего мира. Этот рачок использует две зафиксированные линзы и подвижное чувствительное световое пятно. Перемещая чувствительный детектор, Copilia builds воспринимает изображение как серию пронумерованных точек, каждая из которых располагается на своем месте, в зависимости от интенсивности освещения.

Любой живой организм — это идеальная система, и если кровеносная, нервная и другие позволяют нам существовать, то органы чувств — это как раз то, с помощью чего организм познает и воспринимает внешнюю среду. При этом каждый класс животных организмов имеет свои особенности.

Органы чувств рыб

У представителей этого класса животных есть довольно развитые глаза, которые состоят из сетчатки, хрусталика и роговицы. Принципиальное отличие этих органов в том, что при восприятии изображения хрусталик не изменяет кривизну, как у остальных позвоночных, — он просто двигается относительно роговицы, тем самым фокусируя взгляд.

Имеются у рыб и которые представляют собой три полукруглых, взаимно перпендикулярных канала. У некоторых же представителей есть так называемый Веберов орган, который соединяет полость внутреннего уха с работающим в данном случае как резонатор звука. Рецепторы, воспринимающие вкус и запахи, могут быть расположены не только в ротовой полости и ноздрях, но и разбросаны по всему телу.

Еще один интересный орган — это боковая линия, которая представляет собой совокупность каналов, связанных с нервными волокнами. Боковая линия особо развита у тех рыб, у которых нет глаз — именно благодаря ей они могут воспринимать внешний мир и поддерживать равновесие.

Ни для кого не секрет, что некоторые рыбы могут реагировать на электрические поля и даже генерировать электрические импульсы с помощью специальных клеток и нервных волокон.

Органы чувств земноводных

Органы чувств у представителей этого класса уже более приспособлены к существованию в воздушной среде. Например, глаза у них уже имеют веки, а также мигательную перепонку, которая выполняет увлажняющую и защитную функции. Хрусталик может менять свои размеры в зависимости от освещения.

Кроме того, у земноводных есть обонятельные мешки, которые открываются наружу ноздрями. Животное может воспринимать запахи только в воздушной среде. Что же касается органов слуха, то у земноводных уже формируется и а также небольшая косточка под названием стремечко.

Все механические рецепторы расположены в кожных тканях. У примитивных водных земноводных, а также у головастиков еще сохраняется боковая линия.

Органы чувств пресмыкающихся

У представителей этого класса органы чувств уже более развиты и приспособлены в жизни в воздушной среде. Очень важными для этих животных являются глаза, которые более сформированы, чем у амфибий — есть развитые мышцы, которые крепятся к хрусталику и могут изменять его кривизну, чтобы сфокусировать изображение. Кроме того, у пресмыкающихся появляются настоящие секрет которых защищает глаза животного от высыхания. Есть и подвижные веки.

У таких животных есть хоаны (внутренние ноздри), которые расположены ближе к глотке, что значительно облегчает дыхание во время приема пищи. Доказано, что пресмыкающиеся гораздо более чувствительны к запахам, чем представители класса земноводных.

Органы вкуса представлены специфическими структурами — вкусовыми луковицами, которые расположены в глотке. А между глазами и носом расположена так называемая лицевая ямка, которая позволяет реагировать на перепады температуры. Например, у некоторых змей именно этот орган позволяет быстро находить пищу.

Органы слуха сформированы не очень хорошо и напоминают слуховой аппарат амфибий. У пресмыкающихся есть среднее и с барабанной перепонкой, а также стремечко — небольшая косточка, передающая колебания на барабанную перепонку. Слух в жизни этих животных не особо важен. Например, у змей он практически не развит.

Как видно, органы чувств постепенно изменялись в ходе эволюции, приспосабливаясь к выживанию в определенных условиях и становясь все более сложными и функциональными.