"построение правильных многоугольников с помощью циркуля и линейки". Возможные и невозможные построения

Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа №34 с углубленным изучением отдельных предметов

МАН, физико-математическая секция

«Геометрические построения с помощью циркуля и линейки»

Выполнила: ученица 7 «А» класса

Батищева Виктория

Руководитель: Колтовская В.В.

Воронеж, 2013

3. Построение угла равного данному.

Проведем произвольную окружность с центром в вершине А данного угла (рис.3). Пусть В и С - точки пересечения окружности со сторонами угла. Радиусом АВ проведем окружность с центром в точке О-начальной точке данной полупрямой. Точку пересечения этой окружности с данной полупрямой обозначим С 1 . Опишем окружность с центром С 1 и Рис.3

радиусом ВС. Точка В 1 пересечения построенных окружностей в указанной полуплоскости лежит на стороне искомого угла.

6. Построение перпендикулярных прямых.

Проводим окружность с произвольным радиусом r с центром в точке O рис.6. Окружность пересекает прямую в точках A и B. Из точек A и B проводим окружности с радиусом AB. Пусть тоска С – точка пересечения этих окружностей. Точки А и В мы получили на первом шаге, при построении окружности с произвольным радиусом.

Искомая прямая проходит через точки С и О.


Рис.6

Известные задачи

1. Задача Брахмагупты

Построить вписанный четырехугольник по четырем его сторонам. Одно из решений использует окружность Аполлония. Решим задачу Аполлония, используя аналогию между трехокружником и треугольником. Как мы находим окружность, вписанную в треугольник: строим точку пересечения биссектрис, опускаем из нее перпендикуляры на стороны треугольника, основания перпендикуляров (точки пересечения перпендикуляра со стороной, на которую он опущен) и дают нам три точки, лежащие на искомой окружности. Проводим окружность через эти три точки – решение готово. Точно также мы поступим с задачей Аполлония.

2. Задача Аполлония

Построить с помощью циркуля и линейки окружность, касающуюся трех данных окружностей. По легенде, задача сформулирована Аполлонием Пергским примерно в 220 г. до н. э. в книге «Касания», которая была потеряна, но была восстановлена в 1600 г. Франсуа Виетом, «галльским Аполлонием», как его называли современники.

Если ни одна из заданных окружностей не лежит внутри другой, то эта задача имеет 8 существенно различных решений.


Построение правильных многоугольников.

П

равильный
(или равносторонний ) треугольник - это правильный многоугольник с тремя сторонами, первый из правильных многоугольников. Все стороны правильного треугольника равны между собой, а все углы равны 60°. Чтобы построить равносторонний треугольник нужно разделить окружность на 3 равные части. Для этого необходимо провести дугу радиусом R этой окружности лишь из одного конца диаметра, получим первое и второе деление. Третье деление находится на противоположном конце диаметра. Соединив эти точки, получим равносторонний треугольник.

Правильный шестиугольник можно построить с помощью циркуля и линейки. Ниже приведён метод построения через деление окружности на 6 частей. Используем равенство сторон правильного шестиугольника радиусу описанной окружности. Из противоположных концов одного из диаметров окружности описываем дуги радиусом R. Точки пересечения этих дуг с заданной окружностью разделят её на 6 равных частей. Последовательно соединив найденные точки, получают правильный шестиугольник.

Построение правильного пятиугольника.

П
равильный пятиугольник может быть построен с помощью циркуля и линейки, или вписыванием его в заданную окружность, или построением на основе заданной стороны. Этот процесс описан Евклидом в его «Началах» около 300 года до н. э.

Вот один из методов построения правильного пятиугольника в заданной окружности:

    Постройте окружность, в которую будет вписан пятиугольник и обозначьте её центр как O . (Это зелёная окружность на схеме справа).

    Выберите на окружности точку A , которая будет одной из вершин пятиугольника. Постройте прямую через O и A .

    Постройте прямую перпендикулярно прямой OA , проходящую через точку O . Обозначьте одно её пересечение с окружностью, как точку B .

    Постройте точку C посередине между O и B .

    C через точку A . Обозначьте её пересечение с прямой OB (внутри первоначальной окружности) как точку D .

    Проведите окружность с центром в A через точку D, пересечение данной окружности с оригинальной (зелёной окружностью) обозначьте как точки E и F .

    Проведите окружность с центром в E через точку A G .

    Проведите окружность с центром в F через точку A . Обозначьте её другое пересечение с первоначальной окружностью как точку H .

    Постройте правильный пятиугольник AEGHF .

Неразрешимые задачи

Следующие три задачи на построение были поставлены ещё в античности:

    Трисекция угла - разбить произвольный угол на три равные части.

Иначе говоря, необходимо построить трисектрисы угла - лучи, делящие угол на три равные части. П. Л. Ванцель доказал в 1837 году, что задача разрешима только тогда, когда например, трисекция осуществима для углов α = 360°/n при условии, что целое число n не делится на 3. Тем не менее, в прессе время от времени публикуются (неверные) способы осуществления трисекции угла циркулем и линейкой.

    Удвоение куба - классическая античная задача на построение циркулем и линейкой ребра куба, объём которого вдвое больше объёма заданного куба.

В современных обозначениях, задача сводится к решению уравнения . Всё сводится к проблеме построения отрезка длиной . П. Ванцель доказал в 1837 году, что эта задача не может быть решена с помощью циркуля и линейки.

    Квадратура круга - задача, заключающаяся в нахождении построения с помощью циркуля и линейки квадрата, равновеликого по площади данному кругу .

Как известно, с помощью циркуля и линейки можно выполнить все 4 арифметических действия и извлечение квадратного корня; отсюда следует, что квадратура круга возможна в том и только в том случае, если с помощью конечного числа таких действий можно построить отрезок длины π. Таким образом, неразрешимость этой задачи следует из неалгебраичности (трансцендентности) числа π, которая была доказана в 1882 году Линдеманом.

Другая известная неразрешимая с помощью циркуля и линейки задача - построение треугольника по трём заданным длинам биссектрис .

Причём эта задача остаётся неразрешимой даже при наличии трисектора.

Только в XIX веке было доказано, что все три задачи неразрешимы при использовании только циркуля и линейки. Вопрос возможности построения полностью решён алгебраическими методами, основанными на теории Галуа.

А ЗНАЕТЕ ЛИ ВЫ, ЧТО...

(из истории геометрических построений)


Когда-то в построение правильных многоугольников вкладывали мистический смысл.

Так, пифагорейцы, последователи религиозно-философского учения, основанного Пифагором, и жившие в древней Греции (V I-I V вв. до н. э.), приняли в качестве знака своего союза звездчатый многоугольник, образованный диагоналями правильного пятиугольника.

Правила строгого геометрического построения некоторых правильных многоугольников изложены в книге «Начала» древнегреческого математика Евклида, жившего в III в. до н.э. Для выполнения этих построений Евклид предлагал пользоваться только линейкой и циркулем, который в то время был без шарнирного устройства соединения ножек (такое ограничение в инструментах было непреложным требованием античной математики).

Правильные многоугольники нашли широкое применение и в античной астрономии. Если Евклида построение этих фигур интересовало с точки зрения математики, то для древнегреческого астронома Клавдия Птолемея (около 90 - 160 г. н. э.) оно оказалось необходимым как вспомогательное средство при решении астрономических задач. Так, в 1-й книге «Альмагесты» вся десятая глава посвящена построению правильных пяти- и десятиугольников.

Однако помимо чисто научных трудов, построение правильных многоугольников было неотъемлемой частью книг для строителей, ремесленников, художников. Умение изображать эти фигуры издавна требовалось и в архитектуре, и в ювелирном деле, и в изобразительном искусстве.

В «Десяти книгах о зодчестве» римского архитектора Витрувия (жившего примерно в 63 -14 гг. до н. э.) говорится, что городские стены должны иметь в плане вид правильного многоугольника, а башни крепости «следует делать круглыми или многоугольными, ибо четырехугольник скорее разрушается осадными орудиями».

Планировка городов очень интересовала Витрувия, который считал, что нужно спланировать улицы так, чтобы вдоль них не дули основные ветры. Предполагалось, что таких ветров восемь и что они дуют в определенных направлениях.

В эпоху Возрождения построение правильных многоугольников, и в частности пятиугольника, представляло не простую математическую игру, а являлось необходимой предпосылкой для построения крепостей.

Правильный шестиугольник явился предметом специального исследования великого немецкого астронома и математика Иоганна Кеплера (1571-1630), о котором он рассказывает в своей книге «Новогодний подарок, или о шестиугольных снежинках». Рассуждал о причинах того, почему снежинки имеют шестиугольную форму, он отмечает, в частности, следующее: «...плоскость можно покрыть без зазоров лишь следующими фигурами: равносторонними треугольниками, квадратами и правильными шестиугольниками. Среди этих фигур правильный шестиугольник покрывает наибольшую площадь»

0дним из наиболее известных ученых, занимавшихся геометрическими построениями, был великий немецкий художник и математик Альбрехт Дюрер (1471 -1528), который посвятил им значительную часть своей книги «Руководства...». Он предложил правила построения правильных многоугольников с 3. 4, 5... 16-ю сторонами. Методы деления окружности, предложенные Дюрером, не универсальны, в каждом конкретном случае используется индивидуальный прием.

Дюрер применял методы построения правильных многоугольников в художественной практике, например, при создании разного рода орнаментов и узоров для паркета. Наброски таких узоров были сделаны им во время поездки в Нидерланды, где паркетные полы встречались во многих домах.

Дюрер составлял орнаменты из правильных многоугольников, которые соединены в кольца (кольца из шести равносторонних треугольников, четырех четырехугольников, трех или шести шестиугольников, четырнадцати семиугольников, четырех восьмиугольников).

Заключение

Итак, геометрические построения - это способ решения задачи, при котором ответ получают графическим путем. Построения выполняют чертежными инструментами при максимальной точности и аккуратности работы, так как от этого зависит правильность решения.

Благодаря этой работе я познакомилась с историей возникновения циркуля, подробнее познакомилась с правилами выполнения геометрических построений, получила новые знания и применила их на практике.
Решение задач на построение циркулем и линейкой – полезное времяпровождение, позволяющее по-новому посмотреть на известные свойства геометрических фигур и их элементов. В данной работе рассмотрены наиболее актуальные задачи, связанные с геометрическими построениями с помощью циркуля и линейки. Рассмотрены основные задачи и даны их решения. Приведенные задачи имеют значительный практический интерес, закрепляют полученные знания по геометрии и могут использоваться для практических работ.
Таким образом, цель работы достигнута, поставленные задачи выполнены.

Энциклопедичный YouTube

    1 / 5

    Построения циркулем и линейкой, часть 1.

    1 Простейшие построения циркулем и линейкой

    Science show. Выпуск 19. Циркуль и линейка

    Геометрия - Построение правильного треугольника

    Геометрия - Построение восьмиугольника

    Субтитры

Примеры

Задача на бисекцию . С помощью циркуля и линейки разбить данный отрезок AB на две равные части. Одно из решений показано на рисунке:

  • Циркулем проводим окружности с центром в точках A и B радиусом AB .
  • Находим точки пересечения P и Q двух построенных окружностей (дуг).
  • По линейке проводим отрезок или линию, проходящую через точки P и Q .
  • Находим искомую середину отрезка AB - точку пересечения AB и PQ .

Формальное определение

В задачах на построение рассматриваются множество следующих объектов: все точки плоскости, все прямые плоскости и все окружности плоскости. В условиях задачи изначально задается (считается построенными) некоторое множество объектов. К множеству построенных объектов разрешается добавлять (строить):

  1. произвольную точку;
  2. произвольную точку на заданной прямой;
  3. произвольную точку на заданной окружности;
  4. точку пересечения двух заданных прямых;
  5. точки пересечения/касания заданной прямой и заданной окружности;
  6. точки пересечения/касания двух заданных окружностей;
  7. произвольную прямую, проходящую через заданную точку
  8. прямую, проходящую через две заданные точки;
  9. произвольную окружность с центром в заданной точке
  10. произвольную окружность с радиусом, равным расстоянию между двумя заданными точками.
  11. окружность с центром в заданной точке и с радиусом, равным расстоянию между двумя заданными точками.

Требуется с помощью конечного количества этих операций построить другое множество объектов, находящееся в заданном соотношении с исходным множеством.

Решение задачи на построение содержит в себе три существенные части:

  1. Описание способа построения заданного множества.
  2. Доказательство того, что множество, построенное описанным способом, действительно находится в заданном соотношении с исходным множеством. Обычно доказательство построения производится как обычное доказательство теоремы, опирающееся на аксиомы и другие доказанные теоремы.
  3. Анализ описанного способа построения на предмет его применимости к разным вариантам начальных условий, а также на предмет единственности или неединственности решения, получаемого описанным способом.

Известные задачи

Другая известная и неразрешимая с помощью циркуля и линейки задача - построение треугольника по трём заданным длинам биссектрис . Интересно, что эта задача остаётся неразрешимой даже при наличии инструмента, выполняющего трисекцию угла .

Допустимые отрезки для построения с помощью циркуля и линейки

С помощью этих инструментов возможно построение отрезка, который по длине:

Для построения отрезка с длиной численно равной произведению, частному и квадратному корню из длин заданных отрезков необходимо задание на плоскости построения единичного отрезка (то есть отрезка длины 1). Извлечение корней из отрезков с иными натуральными степенями, не являющимися степенью числа 2, невозможны с помощью циркуля и линейки. Так, например, невозможно при помощи циркуля и линейки из единичного отрезка построить отрезок длиной . Из этого факта, в частности, следует неразрешимость задачи об удвоении куба.

Возможные и невозможные построения

С формальной точки зрения, решение любой задачи на построение сводится к графическому решению некоторого алгебраического уравнения , причем коэффициенты этого уравнения связаны с длинами заданных отрезков. Поэтому можно сказать, что задача на построение сводится к отысканию действительных корней некоторого алгебраического уравнения.

Поэтому удобно говорить о построении числа - графического решения уравнения определенного типа.

Исходя из возможных построений отрезков возможны следующие построения:

  • Построение решений линейных уравнений .
  • Построение решений уравнений, сводящихся к решениям квадратных уравнений .

Иначе говоря, возможно строить лишь отрезки, равные арифметическим выражениям с использованием квадратного корня из исходных чисел (заданных длин отрезков).

Важно отметить, что существенно, что решение должно выражаться при помощи квадратных корней, а не радикалов произвольной степени. Если даже алгебраическое уравнение имеет решение в радикалах, то из этого не следует возможность построения циркулем и линейкой отрезка, равного его решению. Простейшее такое уравнение: x 3 − 2 = 0 , {\displaystyle x^{3}-2=0,} связанное со знаменитой задачей на удвоение куба, сводящаяся к этому кубическому уравнению. Как было сказано выше, решение этого уравнения ( 2 3 {\displaystyle {\sqrt[{3}]{2}}} ) невозможно построить циркулем и линейкой.

Возможность построить правильный 17-угольник следует из выражения для косинуса центрального угла его стороны:

cos ⁡ (2 π 17) = − 1 16 + 1 16 17 + 1 16 34 − 2 17 + {\displaystyle \cos {\left({\frac {2\pi }{17}}\right)}=-{\frac {1}{16}}\;+\;{\frac {1}{16}}{\sqrt {17}}\;+\;{\frac {1}{16}}{\sqrt {34-2{\sqrt {17}}}}\;+\;} + 1 8 17 + 3 17 − 34 − 2 17 − 2 34 + 2 17 , {\displaystyle +{\frac {1}{8}}{\sqrt {17+3{\sqrt {17}}-{\sqrt {34-2{\sqrt {17}}}}-2{\sqrt {34+2{\sqrt {17}}}}}},} что, в свою очередь, следует из возможности сведения уравнения вида x F n − 1 = 0 , {\displaystyle x^{F_{n}}-1=0,} где F n {\displaystyle F_{n}} - любое простое число Ферма , с помощью замены переменной к квадратному уравнению.

Вариации и обобщения

  • Построения с помощью одного циркуля. По теореме Мора - Маскерони с помощью одного циркуля можно построить любую фигуру, которую можно построить циркулем и линейкой. При этом прямая считается построенной, если на ней заданы две точки.
  • Построения с помощью одной линейки. Очевидно, что с помощью одной линейки можно проводить только проективно-инвариантные построения. В частности,
    • невозможно даже разбить отрезок на две равные части,
    • также невозможно найти центр данной окружности.
Однако,
  • при наличии на плоскости заранее проведённой окружности с отмеченным центром с одной линейкой можно провести те же построения, что и циркулем и линейкой (

    Итак, я предлагаю поступить для построения угла 30 градусов при помощи циркуля и линейки следующим образом:

    1) Сначала нам необходимо построить равносторонний треугольник, а именно он будет CFD

    Перед этим мы циркулем строим две окружности одинакового диаметра, вторая окружность строится из точки В.

    2) Теперь, CD делится пополам отрезком FО.

    3) Значит угол CFD у нас получается равным 60 градусам

    4) А в соответствии с этим наши углы CFO и DFO будут равны 30 градусам

    Наш угол построен.

    Очень часто на уроках геометрии у нас дается задание - нарисовать угол 30 градусов с помощью циркуля и линейки. Сделать это можно несколькими способами. Рассмотрим один из них.

    С помощью линейки рисуем отрезок АВ.

    При удалении помогших нам в постройке угла линий, получается долгожданный угол 30 градусов.

    Чертим окружность любого радиуса. Затем выбираем точку на окружности и проводим еще окружность такого же радиуса.

    обозначим точки. где пересекаются две окружности как C и D.

    Теперь соединяем точки с помощью прямой.

    Теперь построим равносторонний треугольник, у которого все углы будут равняться 60 градусов.

    Теперь делим этот угол пополам, и у нас получается угол 30 градусов.

    Построит угол в тридцать градусов, можно следующим способом.

    Инструкция простая:

    1) Сначала рисуете круг любого диаметра;

    2) Рисуете еще один круг, точно такого же диаметра, а сторона второго круга, должна проходить через центр первого круга.

    3) Строите треугольник FCD, как показано на рисунке вверху.

    4) И теперь у вас есть два угла по тридцать градусов, это CFO и DFO.

    Как вы видите это достаточно простой способ построения угла в тридцать градусов используя только линейку и циркуль. Научиться так строить углы может любой человек, причем ему не придется очень долго мучится, так как все просто. Удачи.

    Построить угол в 30 градусов можно достаточно быстро, используя, согласно условию, циркуль и линейку.

    Для начала рисуем две перпендикулярные прямые а и b, которые пересекаются в точке А.

    Отмечаем в любом месте на прямой b точку B.

    Строим окружность, где В центр, а 2АВ радиус.

    О точка пересечения построенной окружности с прямой a.

    Угол ВОА как раз и будет составлять тридцать градусов.

    Что угол в 30 градусов, что в 60 градусов строится в прямоугольном треугольнике с углами 30 и 60 градусов.

    1) Начинаем с окружности: из т.О проведм окружность произвольного радиуса ОА = ОВ.

    3) Соединив точки А, С, В, получим искомый треугольник АВС с углами: lt; CAB = 60 гр. , lt; CBA = 30 гр.

    Данное построение основано на свойстве катета АС,равного половине гипотенузы АВ, лежащего против угла lt; CBA = 30 градусов, соответственно, второй угол lt; САВ = 60 гр. Метод построения тоже простой.

    1. Чертим две пересекающиеся окружности.
    2. Через центры окружностей проводим прямую линию.
    3. Отмечаем точки - вершины нашего равностороннего треугольника: точка пересечения прямой, соединяющей центры окружностей, с одной из окружностей; две точки пересечения окружностей.
    4. У равностороннего треугольника углы, как известно, равны 60 градусов.
    5. Ровно половину от 60 градусов получим, если возьмем угол, расположенный на прямой, соединяющей центры окружностей: она-то как раз и делит угол-вершину треугольника ровно пополам.
  • Для построения угла в 30 градусов с помощью линейки и циркуля предлагаю воспользоваться таким вариантом: сначала чертим ромб, а затем - его диагонали. Используя свойства ромба, можно утверждать, что угол ромба будет 30 градусов. Итак:

    1. Чертим линию PQ
    2. Ставим циркуль в точку Р, раздвигаем циркуль на произвольную ширину (например, до середины нашей линии) и чертим часть окружности. Точку, где она пересекается с линией, назовем S.
    3. Ставим циркуль в точку S и чертим еще раз часть окружности, чтобы она пересеклась с предыдущей. Должно получиться так:

    1. Точку, где пересеклись две части окружности назовем Т.
    2. Циркулем из точки Т проводим еще одну часть окружности, получили точку R.
    3. Соединяем линейкой точки Р - R, S-R, R-T, T-P, T-S, получаем ромб и, принимая вр внимание свойства ромба, получаем угол 30 градусов.

    30 градусов - это половина от 60. Деление угла пополам знаете? Ну вот. А 60 градусов строится на раз. Отметьте точку и проведите окружность с центром в этой точке. Потом, не меняя раствор циркуля, проведите ещ такую же окружность, но с центром на первой окружности. Вот угол между радиусом, проведнным в новый центр, и точкой пересечения двух окружностей будет точнхонько 60 градусов.

    На мой взгляд самый быстрый способ построить угол 30 градусов с помощью линейки и циркуля состоит в следующем:

    проводим горизонтальную линию, ставим на нее в произвольной точке циркуль и проводим окружность. В точке, где окружность пересекла линию (например справа) опять ставим циркуль и проводим еще одну такую же окружность. Проводим линию через центр первой окружности и точку пересечения окружностей (красная линия) и проводим линию через точки пересечения окружностей (зеленая линия). Острый угол между красной и зеленой линиями равен 30 градусам.

    Чтобы построить нужный нам угол, понадобилось всего пять движений.

Построения с помощью циркуля и линейки - раздел евклидовой геометрии, известный с античных времён. задачах на построение циркуль и линейка считаются идеальными инструментами, в частности:

  • Линейка не имеет делений и имеет сторону бесконечной длины, но только одну.
  • Циркуль может иметь какой угодно большой или малый раствор (то есть может чертить окружность произвольного радиуса).
  • 1 Пример
  • 2 Формальное определение
  • 3 Известные задачи
    • 3.1 Построение правильных многоугольников
    • 3.2 Неразрешимые задачи
  • 4 Возможные и невозможные построения
  • 5 Вариации и обобщения
  • 6 Интересные факты
  • 7 См. также
  • 8 Примечания
  • 9 Литература

Пример

Разбиение отрезка пополам

Задача на бисекцию . С помощью циркуля и линейки разбить данный отрезок AB на две равные части. Одно из решений показано на рисунке:

  • Циркулем проводим окружности с центром в точках A и B радиусом AB.
  • Находим точки пересечения P и Q двух построенных окружностей (дуг).
  • По линейке проводим отрезок или линию, проходящую через точки P и Q.
  • Находим искомую середину отрезка AB - точку пересечения AB и PQ.

Формальное определение

В задачах на построение рассматриваются множество всех точек плоскости, множество всех прямых плоскости и множество всех окружностей плоскости, над которыми допускаются следующие операции:

  1. Выделить точку из множества всех точек:
    1. произвольную точку
    2. произвольную точку на заданной прямой
    3. произвольную точку на заданной окружности
    4. точку пересечения двух заданных прямых
    5. точки пересечения/касания заданной прямой и заданной окружности
    6. точки пересечения/касания двух заданных окружностей
  2. «С помощью линейки » выделить прямую из множества всех прямых:
    1. произвольную прямую
    2. произвольную прямую, проходящую через заданную точку
    3. прямую, проходящую через две заданных точки
  3. «С помощью циркуля » выделить окружность из множества всех окружностей:
    1. произвольную окружность
    2. произвольную окружность с центром в заданной точке
    3. произвольную окружность с радиусом, равным расстоянию между двумя заданными точками
    4. окружность с центром в заданной точке и с радиусом, равным расстоянию между двумя заданными точками

В условиях задачи задается некоторое множество точек. Требуется с помощью конечного количества операций из числа перечисленных выше допустимых операций построить другое множество точек, находящееся в заданном соотношении с исходным множеством.

Решение задачи на построение содержит в себе три существенные части:

  1. Описание способа построения заданного множества.
  2. Доказательство того, что множество, построенное описанным способом, действительно находится в заданном соотношении с исходным множеством. Обычно доказательство построения производится как обычное доказательство теоремы, опирающееся на аксиомы и другие доказанные теоремы.
  3. Анализ описанного способа построения на предмет его применимости к разным вариантам начальных условий, а также на предмет единственности или неединственности решения, получаемого описанным способом.

Известные задачи

  • Задача Аполлония о построении окружности, касающейся трех заданных окружностей. Если ни одна из заданных окружностей не лежит внутри другой, то эта задача имеет 8 существенно различных решений.
  • Задача Брахмагупты о построении вписанного четырехугольника по четырем его сторонам.

Построение правильных многоугольников

Основная статья: Теорема Гаусса - Ванцеля Построение правильного пятиугольника

Античным геометрам были известны способы построения правильных n-угольников для, и.

В 1796 году Гаусс показал возможность построения правильных n-угольников при, где - различные простые числа Ферма. 1836 году Ванцель доказал, что других правильных многоугольников, которые можно построить циркулем и линейкой, не существует.

Неразрешимые задачи

Следующие три задачи на построение были поставлены ещё в античности:

  • Трисекция угла - разбить произвольный угол на три равные части.
  • Удвоение куба - построить ребро куба вдвое большего по объёму, чем данный куб
  • Квадратура круга - построить квадрат, равный по площади данному кругу.

Лишь в XIX веке было доказано, что все три задачи неразрешимы при использовании только циркуля и линейки. Вопрос возможности построения полностью решён алгебраическими методами, основанными на теории Галуа.

  • Другая известная неразрешимая с помощью циркуля и линейки задача - построение треугольника по трём заданным длинам биссектрис. Причём эта задача остаётся неразрешимой даже при наличии трисектора.

Возможные и невозможные построения

Каждое построение на самом деле является решением какого-либо уравнения, причем коэффициенты этого уравнения связаны с длинами заданных отрезков. Поэтому удобно говорить о построении числа - графического решения уравнения определенного типа. рамках вышеописанных требований возможны следующие построения:

  • Построение решений линейных уравнений.
  • Построение решений квадратных уравнений.

Иначе говоря, возможно построить лишь числа равные арифметическим выражениям с использованием квадратного корня из исходных чисел (длин отрезков). Например,

  • Если задан только отрезок длины, то невозможно представить в таком виде (отсюда невозможность удвоения куба).
  • Возможность построить правильный 17-угольник следует из выражения на косинус угла:

Вариации и обобщения

  • Построения с помощью одного циркуля. По теореме Мора - Маскерони с помощью одного циркуля можно построить любую фигуру, которую можно построить циркулем и линейкой. При этом прямая считается построенной, если на ней заданы две точки.
  • Построения с помощью одной линейки. Легко заметить, что с помощью одной линейки можно проводить только проективно-инвариантные построения. частности,
    • невозможно даже разбить отрезок на две равные части,
    • также невозможно найти центр данной окружности.
Однако
    • при наличии на плоскости заранее проведённой окружности с отмеченным центром с одной линейкой можно провести те же построения, что и циркулем и линейкой (Теорема Штейнера - Понселе).
    • Если на линейке есть две засечки, то построения с помощью неё эквивалентны построениям с помощью циркуля и линейки (важный шаг в доказательстве этого сделал Наполеон).
  • Построения с помощью инструментов с ограниченными возможностями. задачах такого рода инструменты (в противоположность классической постановке задачи) считаются не идеальными, а ограниченными: прямую через две точки с помощью линейки можно провести только при условии, что расстояние между этими точками не превышает некоторой величины; радиус окружностей, проводимых с помощью циркуля, может быть ограничен сверху, снизу или одновременно и сверху, и снизу.
  • Построения с помощью плоского оригами. см. правила Худзита
  • Узор на флаге Ирана описывается как построение с помощью циркуля и линейки.

См. также

  • Программы динамической геометрии позволяют выполнять построения с помощью циркуля и линейки на компьютере.

Примечания

  1. Кто и когда доказал невозможность построения треугольника по трем биссектрисам?. Дистанционный консультационный пункт по математике МЦНМО.
  2. Можно ли построить треугольник по трем биссектрисам, если кроме циркуля и линейки разрешается использовать трисектор. Дистанционный консультационный пункт по математике МЦНМО.
  3. Стандарт флага Ирана (перс.)

Литература

  • А. Адлер. Теория геометрических построений / Перевод с немецкого Г. М. Фихтенгольца. - Издание третье. - Л.: Учпедгиз, 1940. - 232 с.
  • И. И. Александров. Сборник геометрических задач на построение. - Издание восемнадцатое. - М.: Учпедгиз, 1950. - 176 с.
  • Б. И. Аргунов, М. Б. Балк. Геометрические построения на плоскости. Пособие для студентов педагогических институтов. - Издание второе. - М.: Учпедгиз, 1957. - 268 с.
  • А. М. Воронец. Геометрия циркуля. - М.-Л.: ОНТИ, 1934. - 40 с. - (Популярная библиотека по математике под общей редакцией Л. А. Люстерника).
  • В. А. Гейлер Неразрешимые задачи на построение // СОЖ. - 1999. - № 12. - С. 115-118.
  • В. А. Кириченко Построения циркулем и линейкой и теория Галуа // Летняя школа «Современная математика». - Дубна, 2005.
  • Ю. И. Манин. Книга IV. Геометрия // Энциклопедия элементарной математики. - М.: Физматгиз, 1963. - 568 с.
  • Ю. Петерсен. Методы и теории решения геометрических задач на построение. - М.: Типография Э. Лисснера и Ю. Романа, 1892. - 114 с.
  • В. В. Прасолов. Три классические задачи на построение. Удвоение куба, трисекция угла, квадратура круга. - М.: Наука, 1992. - 80 с. - (Популярные лекции по математике).
  • Я. Штейнер. Геометрические построения, выполняемые с помощью прямой линии и неподвижного круга. - М.: Учпедгиз, 1939. - 80 с.
  • Факультативный курс по математике. 7-9 / Сост. И. Л. Никольская. - М.: Просвещение, 1991. - С. 80. - 383 с. - ISBN 5-09-001287-3.

Построение с помощью циркуля и линейки Информацию О

В задачах на построение будем рассматривать построение геометрической фигуры, которое можно выполнить с помощью линейки и циркуля.

С помощью линейки можно провести:

    произвольную прямую;

    произвольную прямую, проходящую через данную точку;

    прямую, проходящую через две данные точки.

С помощью циркуля можно описать из данного центра окружность данного радиуса.

Циркулем можно отложить отрезок на данной прямой от данной точки.

Рассмотрим основные задачи на построение.

Задача 1. Построить треугольник с данными сторонами а, b, с (рис.1).

Решение. С помощью линейки проведем произвольную прямую и возьмем на ней произвольную точку В. Раствором циркуля, равным а, описываем окружность с центром В и радиусом а. Пусть С - точка ее пересечения с прямой. Раствором циркуля, равным с, описываем окружность из центра В, а раствором циркуля, равным b - окружность из центра С. Пусть А - точка пересечения этих окружностей. Треугольник ABC имеет стороны, равные a, b, c.

Замечание. Чтобы три отрезка прямой могли служить сторонами треугольника, необходимо, чтобы больший из них был меньше суммы двух остальных (а < b + с).

Задача 2.

Решение. Данный угол с вершиной А и луч ОМ изображены на рисунке 2.

Проведем произвольную окружность с центром в вершине А данного угла. Пусть В и С - точки пересечения окружности со сторонами угла (рис.3, а). Радиусом АВ проведем окружность с центром в точке О - начальной точке данного луча (рис.3, б). Точку пересечения этой окружности с данным лучом обозначим С 1 . Опишем окружность с центром С 1 и радиусом ВС. Точка В 1 пересечения двух окружностей лежит на стороне искомого угла. Это следует из равенства Δ ABC = Δ ОВ 1 С 1 (третий признак равенства треугольников).

Задача 3. Построить биссектрису данного угла (рис.4).

Решение. Из вершины А данного угла, как из центра, проводим окружность произвольного радиуса. Пусть В и С - точки ее пересечения со сторонами угла. Из точек В и С тем же радиусом описываем окружности. Пусть D - точка их пересечения, отличная от А. Луч AD делит угол А пополам. Это следует из равенства Δ ABD = Δ ACD (третий признак равенства треугольников).

Задача 4. Провести серединный перпендикуляр к данному отрезку (рис.5).

Решение. Произвольным, но одинаковым раствором циркуля (большим 1/2 АВ) описываем две дуги с центрами в точках А и В, которые пересекутся между собой в некоторых точках С и D. Прямая CD будет искомым перпендикуляром. Действительно, как видно из построения, каждая из точек С и D одинаково удалена от А и В; следовательно, эти точки должны лежать на серединном перпендикуляре к отрезку АВ.

Задача 5. Разделить данный отрезок пополам. Решается так же, как и задача 4 (см. рис.5).

Задача 6. Через данную точку провести прямую, перпендикулярную данной прямой.

Решение. Возможны два случая:

1) данная точка О лежит на данной прямой а (рис. 6).

Из точки О проводим произвольным радиусом окружность, пересекающую прямую а в точках А и В. Из точек А и В тем же радиусом проводим окружности. Пусть О 1 - точка их пересечения, отличная от О. Получаем ОО 1 ⊥ AB. В самом деле, точки О и О 1 равноудалены от концов отрезка АВ и, следовательно, лежат на серединном перпендикуляре к этому отрезку.