Язык дельфинов. Как разговаривают дельфины? Ультразвук

Так уж бывает, что люди болеют. И для постановки диагноза им назначают УЗИ сердца, внутренних органов. У беременных женщин УЗИ позволяет исследовать младенцев, выявить патологии, а для любопытных - узнать пол будущего ребёнка. Но так ли безопасно это ультразвуковое исследование? И причём же здесь дельфины? Как раз к месту, и это я теперь точно знаю. Но обо всём по - порядку.

Для начала перечислим некоторые успешные современные технологические применения ультразвука .

Ультразвуковая сварка под давлением. Стык шероховатых поверхностей уже через 0,1 секунды после воздействия ультразвука приобретает гладкую структуру.
Облучение ультразвуком расплавленных металлов и сплавов позволяет получить более однородную мелкокристаллическую структуру.

Облучение ультразвуком расплавленных металлов содействует удалению из них газов, что в конечном итоге также улучшает качество металла, обеспечивает отсутствие в нем усадочных раковин.

Ультразвук используется также при закалке и отпуске сплавов, сварке и пайке, значительны перспективы применения ультразвука при сверлении и долбежке твердых материалов, очистке металлических изделий, для предотвращения образования накипи на стенках котлов и иных сосудов, получения однородных горючих смесей, при газоочистке и сушке различных материалов. В США освоен дешевый метод нарезания резьбы произвольного профиля на металлических изделиях с помощью ультразвука.

Но что же такое ультразвук ? Если какое-либо тело колеблется в упругой среде быстрее, чем среда успевает обтекать его, то своим движением оно то сжимает, то разрежает среду. Слои повышенного и пониженного давления разбегаются во все стороны от колеблющегося тела и образуют звуковую волну. Если колебания тела, создающего волну следуют друг за другом не реже, чем 16 раз в секунду не чаще, чем 20 тысяч раз в секунду, то человеческое ухо слышит их.

Частоты 16 Гц- 20 кГц, которые способен воспринимать слуховой аппарат человека принято называть звуковыми или акустическими, например писк комара »10 кГц. Но воздух, глубины морей и земные недра наполнены звуками, лежащими вне этого диапазона - инфра- и ультразвуками. В природе ультразвук встречается в качестве компонента многих естественных шумов, в шуме ветра, водопада, дождя, морской гальки, перекатываемой прибоем, в грозовых разрядах. Многие млекопитающие, например кошки и собаки, обладают способностью восприятия ультразвука, частотой до 100 кГц, а локационные способности летучих мышей, ночных бабочек (совок) и морских животных (дельфинов) всем хорошо известны.

Летучая мышь издает ультразвуки, а затем улавливает эхо, отраженное от препятствий. Частота звуков, издаваемых летучей мышью, достигает 50 кГц. Дельфины используют главным образом частоты от 80-100 к Гц. Мощность излучаемых дельфинами локационных сигналов может быть очень большой; известно, что они могут обнаруживать косяки рыбы на расстояниях до километра.


Существование таких звуков было обнаружено с развитием акустики только в конце XIX века. Тогда же начались первые исследования ультразвука, но основы его применения были заложены только в первой трети XX-века.

Ультразвуковые волны (неслышимый звук) по своей природе не отличаются от волн слышимого диапазона и подчиняются тем же физическим законам. У ультразвука есть специфические особенности, которые определили его широкое применение в науке и технике.

Известны как тепловые, так и ме-ханические воздействия упругих колебаний с частота-ми свыше 100 кГц. Даже малая интенсивность подоб-ных концентрированных колебаний значительно влияет на мыслительные структуры и нервную систе-му, вызывая головную боль, головокружение, рас-стройства зрения и дыхания, конвульсии, а иногда и отключение сознания.

Ультразвук воздействует на вирусы, даже вирусы гриппа, желтухи. Они просто гибнут. Тифозная палочка гибнет в течение нескольких секунд. Используется ультразвук в биологии и медицине для дробления жидких и твёрдых веществ.

Многие из вас проходили УЗИ - ультразвуковое исследование внутренних органов. Но ультразвуковое обследование, используемое в медицине, не так уж безопасно. Учёные задумались, нравится ли малышу в мамином животе ни с того ни с сего нарушают каким-то ультразвуком? И вообще: чувствует ли он, что к нему «стучатся»? Над этим задумалась группа исследователей из города Рочестер в американском штате Миннесота. Как сообщает сайт Ananova.com, они с помощью крошечного гидрофона услышали то, что слышит ребёнок. Сначала звук был похож на самую верхнюю ноту, которую можно взять на фортепиано. А когда ультразвук направили прямо на гидрофон, исследователям показалось, что к ним приближается гудящий паровоз. Сомнительно, что младенец приходил в восторг, когда ему в уши ударяют 100 дБ.

Кроме того, опыт с сахаром (см. ниже ) говорит нам о том, что ультразвук может творить подобные перестройки с веществом и сахарами в нашем организме, что до конца не исследовано.

Учёные также советуют врачам быть осторожнее и не направлять ультразвук прямо в ухо эмбриона - возможно, это может быть причиной аномалий развития лица и черепной коробки.

22 октября 2016 в 21:56

Физика в мире животных: дельфины и эхолокация

  • Научно-популярное ,
  • Физика

Дельфины - морские млекопитающие. Их организм устроен специфически из-за образа жизни этих животных. Большинство органов чувств дельфинов работают не так, как у наземных млекопитающих. Их мозг не менее сложен, чем мозг человека, а развивались дельфины дольше людей (около 25 млн лет). Ученые многие десятки лет изучают дельфинов, но до сих пор существуют вопросы относительно их образа жизни, на которые нет ответа. В числе прочих вопросов - система коммуникаций этих животных. Специалисты считают, что у них есть свой язык, но расшифровать его человек пока не в состоянии.

Для того, чтобы сделать это, ученые стараются изучить слуховую систему дельфинов, а также их «эхолот» - систему передачи звуковых сигналов. Видимость под водой практически всегда сильно ограничена, поэтому дельфины полагаются не на зрение (оно у них развито неплохо, но идеальным его назвать нельзя), а на слух. Для общения между собой дельфины используют звуки высокой частоты. Для ориентации в пространстве эти животные издают щелчки определенной частоты и продолжительности. Эти звуковые сигналы, отражаясь от предметов, дают дельфину информацию об окружающих его объектах.

Многие наземные млекопитающие обладают очень острым обонянием. Дельфины, выбрав водную среду для жизни, почти утратили обоняние. Вместо него они научились в совершенстве использовать чувство вкуса. Вкусовые рецепторы дают дельфинам представление о наличии в воде определенных веществ, которые могут свидетельствовать о близости еды, опасности или сородичей. Ученые считают, что дельфины могут определить даже очень небольшую разницу в солености воды. По этой причине те дельфины, которые обитают в Средиземном море, почти не заходят в воды Черного моря, где соленость воды составляет около 17‰, что в вдвое ниже солености воды Средиземного моря.


Лучше всего у дельфинов развит слух, они имеет первостепенное значение в их жизни, заменяя в большинстве случаев зрение. В поисках пищи эти млекопитающие погружаются на большую глубину, где видимость практически отсутствует. Даже, если бы зрение дельфина было бы хорошо развито, что-то разглядеть здесь все равно сложно. А вот эхолокация позволяет обнаруживать пищу и отлично ориентироваться в окружающем пространстве. При этом еще в начале прошлого века специалисты утверждали, что слух у дельфинов развит очень слабо.

Голосовой аппарат

Как и у всех прочих млекопитающих, у предков дельфинов голосовой аппарат, скорее всего, был связан с дыхательной системой. Но у дельфинов и их родственников голосовая система не связана с легкими. Рот у них служит лишь для захвата предметов, включая пищу. Дыхательная система дельфинов сложная, точка вдоха и выдоха - это дыхало, которое находится в верхней точке головы. С дыхательным проходом дельфинов соединены сразу три пары воздушных мешков. Ученые считают, что эти мешки играют важную роль в генерации звуков дельфинами. Общаются они, закрыв пасть и дыхало, под водой, а не на поверхности.

В сентябре этого года исследователи из Карадагского природного заповедника , где показана система общения этих животных. Изменяя громкость и частоту щелчков, дельфины-афалины составляют слова, а из них - предложения. По словам специалистов, во многом эти разговоры похожи на речь человека. Принимая участие в беседе, дельфины внимательно слушают друг друга. Когда «говорит» один дельфин, второй ему внимает, и наоборот. «Каждый звук, генерируемый одним из животных, отличается от другого звука, генерируемого собеседником. Отличие - в спектре и частоте пульсаций. При этом ряд сочетаний звуков не повторяется. Мы можем предположить, что каждая пульсация представляет собой отдельную фонему или слово из языка дельфинов», - говорит руководитель исследования Вячеслав Рябов. Скорость звуковой пульсации у дельфинов составляет около 700 импульсов в секунду.


Сами щелчки генерируются в специфической системе, которая расположена под дыхалом в верхней части головы. Звуковые волны посылаются животными направленно, эту возможность обеспечивает жировая прослойка на лбу животного, а также вогнутая передняя поверхность черепа. В итоге дельфин умеет собирать звук в направленный «луч» с углом расхождения в 9°. Это дает животным широкие возможности. Афалины, например, умеют обнаруживать мелкие объекты размером с мандарин на расстоянии свыше 100 метров.

Слуховой аппарат

Орган слуха у дельфинов не менее сложен, чем звуковой аппарат. Понятно, что ушных раковин у них нет, хотя у предков дельфинов они были. Если бы этот орган остался бы у дельфинов, он вызывал бы очаги турбулентности при движении, что стало бы причиной генерации сильного шума, заглушающего для животного все остальные звуки.

Поэтому звуки воспринимаются дельфинами по-другому. Сначала звуковые сигналы проходят через наружное ушное отверстие (оно все же есть). Затем по такому же узкому слуховому проходу акустическая волна добирается до среднего уха. Причем среднее и внутреннее ухо размещаются у этих животных не в черепной кости, а отдельно, соединяясь с черепом при помощи особого сухожильного крепления. Звуковой нерв передает полученные сигналы в мозг. Интересно, что приемники звука для левого и правого уха не зависят друг от друга. Это позволяет животному определять местоположение источника звука. К примеру, та же афалина может в бассейне точно локализовать место падения небольшой рыбки, и сразу приплыть к месту падения. Кроме ушных каналов, дельфины получают звук и при помощи нижней челюсти, где расположена костная пластина толщиной в 0,3 мм. Она играет роль мембраны.

Благодаря строению своей слуховой системы дельфины могут воспринимать широкий диапазон звуков - от 1 герца до 320 килогерц. Это гораздо более широкий звуковой диапазон, чем тот, который способен воспринимать человек.

Генерируя звуки и улавливая их отражение от окружающих объектов, дельфины изучают окружающее пространство. Причем эхолокационный «прибор» дельфина очень надежен. Друг друга дельфины находят на расстоянии свыше 150 метров в полной темноте. В этом случае они генерируют ультразвуковые сигналы с частотой 60-90 килогерц. При помощи своего «локатора» дельфин получает данные не только о расстоянии до препятствий и объектов, но и об их природе (размер, форма и свойства материала).

Теги:

  • дельфины
  • эхолокация
  • ультразвук
Добавить метки

У дельфинов достаточно хорошо развиты такие органы чувств как органы осязания, зрения, вкуса и слуха.

Рецепторы кожи посылают в мозг дельфина сигналы о прикосновениях к телу, о температуре среды, о болевых ощущениях, об изменении давления воды, о звуковых колебаниях, которые распространяются в воде. Сигналы мгновенно анализируются мозгом. При лёгком прикосновении к коже дельфины обычно открывают и закрывают глаза. Ощущение, вызываемое сменой среды при выныривании, превращается в сигнал для открывания на голове дельфина дыхала и выполнения слитного выдоха-вдоха.

Родятся дельфины с открытыми глазами. В воде, где свет поглощается быстро и уже на небольшой глубине царит вечный мрак, условия для развития остроты зрения совсем неподходящие. И тем не менее у дельфинов довольно острое зрение как в воздухе, так и в воде. Считается, что дельфины, как и все китообразные, не различают цветов. Это предположение основано на том, что в сетчатке китообразных колбочки либо очень малочисленные, либо отсутствуют, а поверхность глаза смазывается прозрачной густой жидкостью, выделяемой так называемыми гардеровыми железами. Глаза дельфинов в темноте светятся, как у кошек, что объясняется наличием особой отражательной оболочки, содержащей кристаллики гуанина.

Наземные млекопитающие обладают острым обонянием. По понятным причинам для большинства из них это жизненная необходимость. Переход предков дельфинов в воду привёл к тому, что их обоняние постепенно атрофировалось, так как запахи в носовой канал могли попадать только в те мгновения, когда после длительной дыхательной паузы с закрытыми ноздрями животное делало короткий вдох. Вместо обоняния у дельфинов развилось чувство вкуса, которое компенсирует отсутствие обоняния. Вкусовые рецепторы дают дельфинам информацию о запахе растворённых в воде веществ, пищи, мочи сородичей. Морские дельфины не могут долго находиться в пресной воде, у них начинаются кожные болезни. Дельфины определяют даже небольшую разницу в солёности воды. Поэтому киты и дельфины, встречающиеся в Средиземном море, где солёность воды составляет 35 ‰ , не заходят в Чёрное море, где солёность воды вдвое ниже. Здесь, в Чёрном море, постепенно прижились, приспособились к условиям лишь три вида дельфинов, ставшие самостоятельными подвидами: афалина, дельфин белобочка и морская свинья.

Но из всех органов чувств у дельфинов лучше всего развиты органы слуха. В жизни дельфинов и других китообразных слух приобрёл первостепенное значение и часто заменяет зрение. Поясним это простым рассуждением. Известно, что некоторые дельфины кормятся не только днём, но и ночью, ныряют на большую глубину, где почти или совсем темно. Китайского речного дельфина и гангского дельфина окружает мутная вода, у них совсем слабое зрение. Но при ловле добычи плохое зрение, похоже, им не очень мешает. Оказывается, плохое зрение им фактически заменяет слух, который воспринимает различные звуки моря (или реки, озера), в том числе сигналы сородичей и эхо собственных сигналов.

Ещё сравнительно недавно (начало ХХ века) учёные считали, что слух у дельфинов развит слабо. В самом деле, что можно услышать в «мире безмолвия», каким долгое время считали океан? И только в 20-30-х годах ХХ века стало ясно, что тишина в море - вещь невозможная.

Интерес к подводным шумам проявил уже пять веков назад гениальный Леонардо да Винчи. Он произвёл первые в мире эксперименты по обнаружению вражеских кораблей, прослушивая создаваемый ими шум с помощью изобретённых им гидроакустических приспособлений.

Гидроакустика до начала второй мировой войны была развита слабо. Военные гидроакустики почти ничего не знали о биологических шумах и о тех существах, которые производили эти шумы. Иногда звуки, производимые косяками рыб, принимались за шум двигателей вражеских подводных лодок, и тогда объявлялась боевая тревога. Ложные тревоги дорого обходились обороняющейся стороне, вызывая сумятицу и дезориентирование, раскрывая противнику состав и расположение боевых единиц и огневых средств.

После войны настало время серьёзно заняться изучением биологических шумов моря. А в море шумных существ бесчисленное множество: это стаи различных рыб, скопления креветок и ракообразных, тюлени, дельфины, все остальные киты и так далее. Издаваемые этими животными звуки самые разнообразные по характеру, частоте, громкости. Это свисты, щёлканья, трескотня и подвывания дельфинов, жужжание, пыхтение, свист, хрюкание, гудение различных рыб, мычание, вой, скрежет, стоны и вздохи крупных китов, хлопки и пощёлкивания крошечных креветок.

Частота этих звуков колеблется в больших пределах. Рыбы издают звуки частотой от 20-50 герц до 20 килогерц. Дельфины и другие зубатые киты генерируют ультразвуковые импульсы с частотой 60-90 килогерц.

Как же дельфины издают звуки? У наземных предков дельфинов голосовой аппарат наверняка был тесно связан с дыхательной системой. Как и у современных наземных млекопитающих. Но эволюция изменила у дельфинов устройство дыхательных путей. У всех зубатых китов, в том числе у дельфинов, ни ротовая полость, ни глотка с лёгкими не сообщаются, а рот служит только для захвата и поглощения пищи. Дышат дельфины через так называемое дыхало - отверстие, находящееся в самой верхней точке головы. Дыхало имеет надёжный клапан - мясистую пробку, предохраняющую лёгкие от попадания туда воды. Широкая «ноздря» - дыхало позволяет до минимума сократить время на вдох и выдох. С проходом дыхала, назовём его новым проходом, соединены три пары ассиметричных воздушных мешков, которые окружены мышцами и имеют в местах соединения с носовым проходом перемычки и внутренние пробки. Исследователи полагают, что воздушные мешки играют главную роль в образовании звуков, которые возникают при закрытой пасти и заткнутом дыхале в результате перекачивания воздуха из одного мешка в другой.

Ещё более сложно у дельфинов устроен и функционирует орган слуха, то есть механизм восприятия звуков. Ушных раковин, которые были у их предков, у дельфинов нет. При движении в воде они создавали бы дополнительное сопротивление, вызывали бы очаги турбулентности пограничного слоя воды, обтекающего тела дельфина, а порождаемый этим шум заглушил бы другие звуки. Это ещё одно, с виду внешнее, но по сути глубоко внутреннее проявление результатов длительной эволюции китообразных. Природа создала совершенную слуховую систему китообразных. Сложная по устройству и принципу функционирования, эта система схематично может быть представлена следующим образом. Звуковые сигналы проходят через небольшое наружное ушное отверстие и слуховой проход (частично заросший) к среднему уху. Среднее и внутреннее ухо дельфина помещены не в общей черепной кости, а замурованы в особое, твёрдое и прочное вещество в виде отдельных образований и подвешены к черепу на специальной сухожильной связке. От остального черепа эти образования отделены полостями, заполненные воздухом или пеной из белковой эмульсии. Сильно развитый слуховой нерв передаёт сигналы в головной мозг. Полностью независимые друг от друга звукоприёмники правого и левого уха хорошо приспособлены для определения местоположения источника звука. Например, дельфин афалина способен в огромном бассейне по всплеску точно определить, куда упала рыбка, небольшая монетка или просто каплю воды. Дальнейшие исследования звукоприёмного механизма дельфинов показали, что у них есть ещё один приёмник звука - нижняя челюсть, точнее - расположенная в нижней челюсти тонкая костная пластинка - мембрана толщиной 0,3 мм.

Слуховые способности дельфинов поразительны. Диапазон частот воспринимаемых ими звуков очень широк: от 1 герца до 320 килогерц. Это примерно в 15 раз выше предела слышимости человеческого уха. При этом дельфины способны различать звуки с минимальной разницей по частоте. Афалины, например, улавливают разницу в 0,3 %, а азовки - даже в 0,02 %. Лучше всего дельфины улавливают звуки ультразвукового диапазона. Вместе с тем они способны издавать ультразвуки большой энергии. Если бы человек мог услышать эти звуки, то они показались бы ему громче рёва турбин реактивного самолёта, стартующего на взлётно-посадочной полосе.

Высокие слуховые возможности дельфинов и их способность издавать звуки-сигналы в широком диапазоне частот являются абсолютно необходимыми для жизни этих животных. Природа ничего не делает бессмысленно. Без способности воспринимать и анализировать самые разнообразные звуки, без способности издавать звуки китообразные жить в море не могут. При этом для них одинаково важны как звуки, издаваемые другими живыми существами, так и эхо, отражение звуков, издаваемых ими самими. Способ получения информации о предмете путём восприятия и анализа эха (отражения) посланного сигнала называется эхолокацией. В природе эхолокация известна, например, у летучих мышей. У дельфинов эхолокация была открыта совсем недавно, в середине ХХ века. Запоздало это открытие всё по той же причине: море считали миром безмолвия.

Эхолокация позволяет дельфинам хорошо ориентироваться в пространстве, находить пищу даже в мутной воде или в тёмной пучине моря, избегать опасности встречи с хищником или с естественным препятствием. Эхолокационный аппарат дельфинов весьма надёжен. Звуковые волны, отражаясь от поверхностей, являющихся границами двух сред, дают дельфинам информацию не только об обращенной к ним стороне лоцируемого объекта, но и о противоположной, невидимой глазом, стороне. Звук в воде распространяется почти в пять раз быстрее, чем в воздухе. За секунду звук проходит в воде более полутора километров. С помощью эхолокатора дельфины могут находить друг друга на расстоянии до 150 метров. При этом они используют чаще всего ультразвуковые сигналы с частотой 60-90 килогерц (человеческое ухо воспринимает звуки с частотой до 14-16 килогерц). Ультразвук быстро затухает, но дельфины издают ультразвуковые сигналы, обладающие большой энергией, и эти сигналы хорошо слышат те, кому они предназначены. Учёные предполагают, что дальность эхолокации дельфинов может достигать нескольких километров. А если предположить, что дельфин будет издавать звуки низкой частоты и при этом использовать звуковой канал, то сородичи могут услышать его и за несколько сотен километров.

Справка: Звуковой канал - это слой воды в Мировом океане, который охватывает всю его акваторию, нигде не прерывается и пропускает звуковые волны на огромные расстояния, практически не снижая их энергии. Это явление сверхдальнего распространения звука в воде открыли в 1946 году советские учёные Л.М. Бреховских и Л.Д. Розенберг.

Некоторые учёные предполагают, что крупные киты, звуки которых имеют большую энергию, используют звуковой канал океана для взаимного общения.

Издавая ультразвуковые сигналы, дельфин проводит «рекогносцировку» окружающего пространства. Отразившийся от подводного объекта локационный звуковой импульс сильно изменяется и отличия дают дельфину нужную информацию обо всём, что творится вокруг. Для обследования окружающих его объектов дельфин подаёт десятки и сотни звуковых импульсов. В результате дельфин получает информацию не только об удалённости лоцируемых объектов, но и об их размере, форме и даже материале (твёрдый, мягкий, плотный, пористый и так далее).

Способность сформировать и направить звуковой сигнал на обследуемый объект дельфинам обеспечивает особое устройство из звукогенерирующего аппарата, основными элементами которого являются упомянутые выше воздушные мешки, лобно-носовая жировая подушка и вогнутая передняя поверхность черепа, образующие своеобразный звуковой излучатель, акустический «прожектор».

В механизме образования звуков дельфинов многое ещё остаётся неясным. Природа умеет подчас строго хранить свои тайны.

У дельфинов очень хорошо развита слуховая память. Они способны не просто различить очень тихий звук на большом расстоянии, но и запомнить его. Долгое время ученые считали, что у дельфинов есть свой особый язык. Однако достоверного подтверждения этому до сих пор нет. Сейчас исследователи говорят скорее о некой системе звуковых сигналов, посредством которой дельфины общаются между собой. Она же помогает дельфинам легко ориентироваться в подводном мире.

Дельфины могут издавать сигналы двух типов: эхолокационные (сонарные) и «щебеты», говорящие об эмоциональном состоянии дельфина. Эхолокационные сигналы служат для исследования обстановки и обнаружения препятствий. Человек не может различить их - они испускаются на очень высоких, ультразвуковых частотах. Сигналы второго типа обычно называют «свистом» или «щебетом». У разных видов они немного различаются.

«Свист» служит многим важным целям. Благодаря ему дельфины распознают членов своего «клана». Этими же сигналами они сообщают друг другу о своем состоянии: «Я в беде», «Я рассержен», «Плыви ко мне». «Я в беде» - это высокий мелодичный свист, следующий за коротким и унылым. «Я рассержен» - это звуки, напоминающие лай. Тонкий визгливый писк - это призыв дельфиненка: «Мама, подплыви ко мне!» А тявкающий звук, свойственный только самцам, должен привлекать самок. Есть у дельфинов и звуки, обозначающие приветствие, прощание или беспокойство. Сейчас насчитывается около 40 видов таких сигналов.

В одиночестве дельфин молчалив, в паре - разговорчив, в стае - болтает почти без умолку. У каждого дельфина есть «имя», которое знают члены стаи и на которое он отзывается. Оно дается дельфину при рождении. «Имя» представляет собой короткий характерный свист, длящийся около 0,9 секунды.

Человеческая речь для дельфинов слишком медленна и многословна. Обмен сигналами у них проходит намного быстрее и при этом всегда «по делу». Дельфины могут испускать звуки, неслышимые человеческим ухом - к примеру, те же самые сонарные сигналы. Сами дельфины различают звуки в диапазоне от 100 Гц до 300 килогерц (для человека «потолок» - 20 килогерц, хотя отдельные музыканты способны различать звуки до 40 килогерц). Именно звуки различных частот, испускаемые дельфинами (в том числе и ультразвук), благотворно влияют на организм людей.

Самый говорливый представитель дельфиновых - это белуха, или белый кит. Эти животные могут издавать весьма разнообразные звуки. Они повизгивают, свистят на высоких частотах, издают мелодичные переливчатые трели и звуки, подобные кудахтанию, чириканью или мяуканью. Белухи могут даже подражать колокольному звону или голосам птиц, которых никогда не видели. За такие выдающиеся способности белух часто называют «морскими канарейками».

Другой, не менее голосистый вид дельфинов - это афалины. Они могут «лаять», пищать, «скрипеть», «щелкать», «жужжать», похрюкивать и даже испускать звуки, похожие на шум моторной лодки! Свои богатые таланты афалины нередко демонстрируют в океанариумах и дельфинариях.

Помимо звуковых сигналов, у дельфинов есть язык тела, который тоже используется для общения. Дельфины подают друг другу знаки головой, хвостом, плавниками, могут принимать позы, имеющие определенное значение. Иногда сигналами служат даже разные способы плавания.

Для чего люди изучают язык дельфинов? С древних времен люди не теряли надежды установить с дельфинами двусторонний контакт. Понимание языка дельфинов может открыть человеку доступ ко многим тайнам природы. Во-вторых, контакт с дельфинами позволить определить уровень их интеллектуального развития и понять, кто же все-таки умнее - дельфины или человек. А пока люди и дельфины общаются в основном на языке жестов и с помощью коротких стереотипных сигналов, понятных и тем, и другим.

Возможно, что идею колеса подсказал человеку круглый камень, скатившийся с горы. Несомненно, что человек построил самолет, подражая парящим в поднебесье птицам… Природа многое подсказала инженерам. И еще больше может подсказать сейчас, когда неизмеримо возросли возможности техники и вместе с тем шире и глубже развернули свои исследования биологи. Не случайно именно в последние годы на стыке биологии и техники родилась новая отрасль знаний - бионика. Статья биологов В. Бельковича и А. Яблокова рассказывает о некоторых интересных и малоизученных особенностях строения организма морских млекопитающих: , китов и дельфинов. В ряде случаев авторы предлагают собственные гипотезы, объясняющие действие или назначение того или другого «механизма» животного. Может быть инженеры предложат другое объяснение тем же явлениям! А может быть, они заимствуют у животных принцип решения некоторых «инженерных» задач и перенесут их в свои конструкции.

Способность некоторых китов испускать ультразвуки высокой частоты - до 150 тысяч герц - известна уже много лет. Давно было выяснено, что это позволяет всем дельфинам и крупным зубатым китам - кашалоту и клюворылым - ориентироваться в воде. Посылая ультразвуковой и воспринимая его отражение, зверь может с большой точностью определять расстояние до добычи, характер возникшего впереди препятствия и свое положение в стаде. Опыты, проведенные американскими исследователями в специальных бассейнах - океанариумах, позволили выяснить характеристику звуков, которые издаются дельфинами.

В спокойном состоянии животные испускают ультразвуковые импульсы непрерывно, через каждые 15-20 секунд, Эти импульсы служат для общей ориентировки. Но как только внимание зверя привлечет какое-то препятствие или брошенный в бассейн предмет, число импульсов резко возрастает; дельфин детально изучает новый предмет с помощью своего эхолокатора. Точность эхолокации удивительно высока. Например, дельфины-афалины (они обитают и у нас в Черном море) немедленно реагировали на брошенную в воду в 20-30 метрах от них маленькую дробинку, диаметром в 4 миллиметра. Тот же механизм помогает животным отыскивать пищу. В бассейн помещались два вида рыб: один из них был любимой пищей дельфинов, а другой - очень похожий формой и размерами - по своим вкусовым качествам не особенно привлекал их. За много метров и в полной темноте животное безошибочно отличало одну рыбу от другой.

Интересно, что аппарат эхолокации есть только у зубатых китов. Многие из них питаются глубоководными организмами, которые обитают на глубине в полторы-две тысячи метров, где стоит вечная ночь и органы зрения бессильны помочь в поисках добычи. Усатые киты - обитатели поверхностных слоев океана, - питающиеся в основном планктонными организмами, не обладают таким органом.

Основную роль в генерации ультразвуков играет сложная система надчерепных воздухоносных полостей, примыкающих к носовому проходу. Своеобразные «мешки» разделены тонкими стенками. Под действием различных мышц воздух пережимается из одного мешка в другой, а вибрирующие при этом стенки порождают ультразвуковой импульс.

До самого последнего времени оставалось загадкой, каким образом животное может фокусировать ультразвуки, посылать импульс их в нужном направлении. На голове дельфинов и зубатых китов есть лобный выступ из жировой ткани. Нам кажется, что эта ткань служит акустической линзой. Вся система жировой подушки снабжена собственной своеобразной мускулатурой и сложной системой связок. Очевидно, назначение их в том, чтобы изменять фокусировку линзы.

Рефлектором генерируемых ультразвуков может служить череп. На эту мысль наталкивает особенность его конструкции, В самом деле, различные живые ткани по-разному проводят ультразвук. Жировая ткань - идеальный проводник ультразвука. Костные ткани проводят ультразвуковые колебания значительно хуже. Между прочим, назначение жирового лобного выступа до сих пор было непонятным.

Расчеты показывают, что если исходить из гипотезы ультразвукового прожектора и возможности фокусировки пучка ультразвука, кит может сконцентрировать в некоторой точке пространства перед головой значительную энергию. Ведь известно, что интенсивность звука пропорциональна квадрату частоты колебаний. У дельфинов зарегистрированы колебания частотой до 196 тысяч герц. При такой сверхвысокой частоте должна создаваться весьма значительная интенсивность ультразвукового пучка.

Сейчас еще неясно, как влияет ультразвук на живой организм и как будет действовать концентрированный «пучок» такой интенсивности, например, на рыб или головоногих моллюсков, которыми питаются зубатые киты. Можно предположить, что ультразвуковой удар будет значителен и должен - хотя бы на некоторое время - ошеломить, парализовать животное. Кстати, вопрос о том, как добывают пищу зубатые киты, в общем менее подвижные, чем рыбы или кальмары, до сих пор остается неясным. Гипотеза об ультразвуковом прожекторе как будто бы проясняет его.

Обратите внимание на фото вверху страницы. На тюленьей морде видны расположенные в строгом порядке осязательные волоски - вибриссы. Оказалось, что число их различно у разных видов и даже подвидов наших тюленей. Назначение этого органа при жизни в воде биологи долгое время не могли объяснить.

Особенности строения вибрисс показывают, что они способны воспринимать и даже усиливать малейшие колебания водной среды. Каждая вибрисса представляет собой длинный и прочный роговой стержень в волосяной сумке, окруженной объемистыми кровеносными полостями. Кровь или лимфа, заполняющие эти полости, служат великолепным и точным передатчиком самых ничтожных давлений, которые поступают на стенки волосяной сумки, а затем и на прикрепленные к ним пучки нервных волокон.

Если посмотреть на совокупность вибрисс, то бросается в глаза строгая закономерность в их распределении. Можно предположить, что аппарат вибрисс - это своеобразная антенна, улавливающая ультразвук. Система вибрисс развита лишь у усатых китов и ластоногих, не обладающих способностью к эхолокации, и, возможно, в какой-то степени заменяет ее.

Продолжение следует.

P. S. О чем еще говорят британские ученые: о том, что обитатели моря, впрочем как и другие братья наши меньшие могли бы поделится еще многими своими секретами с современными конструкторами и строителями. И если ученные и дальше будут работать в этом направлении, то возможно в будущем на сайте stroy23.mirdoma.org появятся новые проекты сверхпрочных домов, позаимствованные, к примеру, у или муравьев.