Равенство параллельных прямых. Параллельные прямые на плоскости и в пространстве

1. Если две прямые параллельны третьей прямой, то они являются параллельными:

Если a ||c и b ||c , то a ||b .

2. Если две прямые перпендикулярны третьей прямой, то они параллельны:

Если a c и b c , то a ||b .

Остальные признаки параллельности прямых основаны на углах, образующихся при пересечении двух прямых третьей.

3. Если сумма внутренних односторонних углов равна 180°, то прямые параллельны:

Если ∠1 + ∠2 = 180°, то a ||b .

4. Если соответственные углы равны, то прямые параллельны:

Если ∠2 = ∠4, то a ||b .

5. Если внутренние накрест лежащие углы равны, то прямые параллельны:

Если ∠1 = ∠3, то a ||b .

Свойства параллельных прямых

Утверждения, обратные признакам параллельности прямых, являются их свойствами. Они основаны на свойствах углов, образованных пересечением двух параллельных прямых третьей прямой.

1. При пересечении двух параллельных прямых третьей прямой, сумма образованных ими внутренних односторонних углов равна 180°:

Если a ||b , то ∠1 + ∠2 = 180°.

2. При пересечении двух параллельных прямых третьей прямой, образованные ими соответственные углы равны:

Если a ||b , то ∠2 = ∠4.

3. При пересечении двух параллельных прямых третьей прямой, образованные ими накрест лежащие углы равны:

Если a ||b , то ∠1 = ∠3.

Следующее свойство является частным случаем для каждого предыдущего:

4. Если прямая на плоскости перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой:

Если a ||b и c a , то c b .

Пятое свойство - это аксиома параллельности прямых:

5. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной прямой.

Эта глава посвящена изучению параллельных прямых. Так называются две прямые на плоскости, которые не пересекаются. Отрезки параллельных прямых мы видим в окружающей обстановке - это два края прямоугольного стола, два края обложки книги, две штанги троллейбуса и т. д. Параллельные прямые играют в геометрии очень важную роль. В этой главе вы узнаете о том, что такое аксиомы геометрии и в чём состоит аксиома параллельных прямых - одна из самых известных аксиом геометрии.

В п. 1 мы отмечали, что две прямые либо имеют одну общую точку, т. е. пересекаются, либо не имеют ни одной общей точки, т. е. не пересекаются.

Определение

Параллельность прямых а и b обозначают так: а || b.

На рисунке 98 изображены прямые а и b, перпендикулярные к прямой с. В п. 12 мы установили, что такие прямые а и b не пересекаются, т. е. они параллельны.

Рис. 98

Наряду с параллельными прямыми часто рассматривают параллельные отрезки. Два отрезка называются параллельными , если они лежат на параллельных прямых. На рисунке 99, а отрезки АВ и CD параллельны (АВ || CD), а отрезки MN и CD не параллельны. Аналогично определяется параллельность отрезка и прямой (рис. 99, б), луча и прямой, отрезка и луча, двух лучей (рис. 99, в).


Рис. 99 Признаки параллельности двух прямых

Прямая с называется секущей по отношению к прямым а и b, если она пересекает их в двух точках (рис. 100). При пересечении прямых а и b секущей с образуется восемь углов, которые на рисунке 100 обозначены цифрами. Некоторые пары этих углов имеют специальные названия:

    накрест лежащие углы : 3 и 5, 4 и 6;
    односторонние углы : 4 и 5, 3 и 6;
    соответственные углы : 1 и 5, 4 и 8, 2 и 6, 3 и 7.


Рис. 100

Рассмотрим три признака параллельности двух прямых, связанные с этими парами углов.

Теорема

Доказательство

Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны: ∠1 = ∠2 (рис. 101, а).

Докажем, что а || b. Если углы 1 и 2 прямые (рис. 101, б), то прямые а и b перпендикулярны к прямой АВ и, следовательно, параллельны.


Рис. 101

Рассмотрим случай, когда углы 1 и 2 не прямые.

Из середины О отрезка АВ проведём перпендикуляр ОН к прямой а (рис. 101, в). На прямой b от точки В отложим отрезок ВН 1 , равный отрезку АН, как показано на рисунке 101, в, и проведём отрезок ОН 1 . Треугольники ОНА и ОН 1 В равны по двум сторонам и углу между ними (АО = ВО, АН = ВН 1 , ∠1 = ∠2), поэтому ∠3 = ∠4 и ∠5 = ∠6. Из равенства ∠3 = ∠4 следует, что точка Н 1 лежит на продолжении луча ОН, т. е. точки Н, О и Н 1 лежат на одной прямой, а из равенства ∠5 = ∠6 следует, что угол 6 - прямой (так как угол 5 - прямой). Итак, прямые а и b перпендикулярны к прямой HH 1 поэтому они параллельны. Теорема доказана.

Теорема

Доказательство

Пусть при пересечении прямых а и b секущей с соответственные углы равны, например ∠1 =∠2 (рис. 102).


Рис. 102

Так как углы 2 и 3 - вертикальные, то ∠2 = ∠3. Из этих двух равенств следует, что ∠1 = ∠3. Но углы 1 и 3 - накрест лежащие, поэтому прямые а и b параллельны. Теорема доказана.

Теорема

Доказательство

    Пусть при пересечении прямых а и b секущей с сумма односторонних углов равна 180°, например ∠1 + ∠4 = 180° (см. рис. 102).

    Так как углы 3 и 4 - смежные, то ∠3 + ∠4 = 180°. Из этих двух равенств следует, что накрест лежащие углы 1 и 3 равны, поэтому прямые а и b параллельны. Теорема доказана.

Практические способы построения параллельных прямых

Признаки параллельности прямых лежат в основе способов построения параллельных прямых с помощью различных инструментов, используемых на практике. Рассмотрим, например, способ построения параллельных прямых с помощью чертёжного угольника и линейки. Чтобы построить прямую, проходящую через точку М и параллельную данной прямой а, приложим чертёжный угольник к прямой а, а к нему линейку так, как показано на рисунке 103. Затем, передвигая угольник вдоль линейки, добьёмся того, чтобы точка М оказалась на стороне угольника, и проведём прямую b. Прямые а и b параллельны, так как соответственные углы, обозначенные на рисунке 103 буквами α и β, равны.


Рис. 103 На рисунке 104 показан способ построения параллельных прямых при помощи рейсшины. Этим способом пользуются в чертёжной практике.


Рис. 104 Аналогичный способ применяется при выполнении столярных работ, где для разметки параллельных прямых используется малка (две деревянные планки, скреплённые шарниром, рис. 105).


Рис. 105

Задачи

186. На рисунке 106 прямые а и b пересечены прямой с. Докажите, что а || b, если:

    а) ∠1 = 37°, ∠7 = 143°;
    б) ∠1 = ∠6;
    в) ∠l = 45°, а угол 7 в три раза больше угла 3.


Рис. 106

187. По данным рисунка 107 докажите, что АВ || DE.


Рис. 107

188. Отрезки АВ и CD пересекаются в их общей середине. Докажите, что прямые АС и BD параллельны.

189. Используя данные рисунка 108, докажите, что ВС || AD.


Рис. 108

190. На рисунке 109 АВ = ВС, AD = DE, ∠C = 70°, ∠EAC = 35°. Докажите, что DE || АС.


Рис. 109

191. Отрезок ВК - биссектриса треугольника АВС. Через точку К проведена прямая, пересекающая сторону ВС в точке М так, что ВМ = МК. Докажите, что прямые КМ и АВ параллельны.

192. В треугольнике АВС угол А равен 40°, а угол ВСЕ, смежный с углом АСВ, равен 80°. Докажите, что биссектриса угла ВСЕ параллельна прямой АВ.

193. В треугольнике ABC ∠A = 40°, ∠B = 70°. Через вершину В проведена прямая BD так, что луч ВС - биссектриса угла ABD. Докажите, что прямые АС и BD параллельны.

194. Начертите треугольник. Через каждую вершину этого треугольника с помощью чертёжного угольника и линейки проведите прямую, параллельную противоположной стороне.

195. Начертите треугольник АВС и отметьте точку D на стороне АС. Через точку D с помощью чертёжного угольника и линейки проведите прямые, параллельные двум другим сторонам треугольника.

На плоскости прямые называются параллельными, если у них нет общих точек, то есть они не пересекаются. Для обозначения параллельности используют специальный значок || (параллельные прямые a || b).

Для прямых, лежащих в пространстве, требования отсутствия общих точек недостаточно - чтобы они в пространстве были параллельными, они должны принадлежать одной плоскости (иначе они будут скрещивающимися).

За примерами параллельных прямых далеко идти не надо, они сопровождают нас повсюду, в комнате - это линии пересечения стены с потолком и полом, на тетрадном листе - противоположные края и т.д.

Совершенно очевидно, что, имея параллельность двух прямых и третью прямую, параллельную одной из первых двух, она будет параллельна и второй.

Параллельные прямые на плоскости связаны утверждением, которое не доказывается с помощью аксиом планиметрии. Его принимают как факт, в качестве аксиомы: для любой точки на плоскости, не лежащей на прямой, существует единственная прямая, которая проходит через нее параллельно данной. Эту аксиому знает каждый шестиклассник.

Ее пространственное обобщение, то есть утверждение, что для любой точки в пространстве, не лежащей на прямой, существует единственная прямая, которая проходит через нее параллельно данной, легко доказывается с помощью уже известной нам аксиомы параллельности на плоскости.

Свойства параллельных прямых

  • Если любая из параллельных двух прямых параллельна третьей, то они взаимно параллельны.

Этим свойством обладают параллельные прямые и на плоскости, и в пространстве.
В качестве примера рассмотрим его обоснование в стереометрии.

Допустим параллельность прямых b и с прямой a.

Случай, когда все прямые лежат в одной и той же плоскости оставим планиметрии.

Предположим, a и b принадлежат плоскости бетта, а гамма - плоскость, которой принадлежат a и с (по определению параллельности в пространстве прямые должны принадлежать одной плоскости).

Если допустить, что плоскости бетта и гамма различные и отметить на прямой b из плоскости бетта некую точку B, то плоскость, проведенная через точку B и прямую с должна пересечь плоскость бетта по прямой (обозначим ее b1).

Если бы полученная прямая b1 пересекала плоскость гамма, то, с одной стороны, точка пересечения должна была бы лежать на a, поскольку b1 принадлежит плоскости бетта, а с другой, она должна принадлежать и с, поскольку b1 принадлежит третьей плоскости.
Но ведь параллельные прямые a и с пересекаться не должны.

Таким образом, прямая b1 должна принадлежать плоскости бетта и при этом не иметь общих точек с a, следовательно, согласно аксиоме параллельности, она совпадает с b.
Мы получили совпадающую с прямой b прямую b1, которая принадлежит одной и той же плоскости с прямой с и при этом ее не пересекает, то есть b и с - параллельны

  • Через точку, которая не лежит на заданной прямой, параллельная данной может проходить лишь одна единственная прямая.
  • Лежащие на плоскости перпендикулярно третьей две прямые параллельны.
  • При условии пересечения плоскости одной из параллельных двух прямых, эту же плоскость пересекает и вторая прямая.
  • Соответствующие и накрест лежащие внутренние углы, образованные пересечением параллельных двух прямых третьей, равны, сумма у образовавшихся при этом внутренних односторонних равна 180°.

Верны и обратные утверждения, которые можно принять за признаки параллельности двух прямых.

Условие параллельности прямых

Сформулированные выше свойства и признаки представляют собой условия параллельности прямых, и их вполне можно доказать методами геометрии. Иначе говоря, для доказательства параллельности двух имеющихся прямых достаточно доказать их параллельность третьей прямой либо равенство углов, будь то соответствующих или накрест лежащих, и т.п.

Для доказательства в основном используют метод «от противного», то есть с допущения, что прямые непараллельны. Исходя из этого допущения, легко можно показать, что в этом случае нарушаются заданные условия, например, накрест лежащие внутренние углы оказываются неравными, что и доказывает некорректность сделанного допущения.

Признаки параллельности двух прямых

Теорема 1. Если при пересечении двух прямых секущей:

    накрест лежащие углы равны, или

    соответственные углы равны, или

    сумма односторонних углов равна 180°, то

прямые параллельны (рис.1).

Доказательство. Ограничимся доказательством случая 1.

Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны. Например, ∠ 4 = ∠ 6. Докажем, что а || b.

Предположим, что прямые а и b не параллельны. Тогда они пересекаются в некоторой точке М и, следовательно, один из углов 4 или 6 будет внешним углом треугольника АВМ. Пусть для определенности ∠ 4 - внешний угол треугольника АВМ, а ∠ 6 - внутренний. Из теоремы о внешнем угле треугольника следует, что ∠ 4 больше ∠ 6, а это противоречит условию, значит, прямые а и 6 не могут пересекаться, поэтому они параллельны.

Следствие 1 . Две различные прямые на плоскости, перпендикулярные одной и той же прямой, параллельны (рис.2).

Замечание. Способ, которым мы только что доказали случай 1 теоремы 1, называется методом доказательства от противного или приведением к нелепости. Первое название этот способ получил потому, что в начале рассуждения делается предположение, противное (противоположное) тому, что требуется доказать. Приведением к нелепости он называется вследствие того, что, рассуждая на основании сделанного предположения, мы приходим к нелепому выводу (к абсурду). Получение такого вывода заставляет нас отвергнуть сделанное вначале допущение и принять то, которое требовалось доказать.

Задача 1. Построить прямую, проходящую через данную точку М и параллельную данной прямой а, не проходящей через точку М.

Решение. Проводим через точку М прямую р перпендикулярно прямой а (рис. 3).

Затем проводим через точку М прямую b перпендикулярно прямой р. Прямая b параллельна прямой а согласно следствию из теоремы 1.

Из рассмотренной задачи следует важный вывод:
через точку, не лежащую на данной прямой, всегда можно провести прямую, параллельную данной .

Основное свойство параллельных прямых состоит в следующем.

Аксиома параллельных прямых. Через данную точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Рассмотрим некоторые свойства параллельных прямых, которые следуют из этой аксиомы.

1) Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую (рис.4).

2) Если две различные прямые параллельны третьей прямой, то они параллельны (рис.5).

Справедлива и следующая теорема.

Теорема 2. Если две параллельные прямые пересечены секущей, то:

    накрест лежащие углы равны;

    соответственные углы равны;

    сумма односторонних углов равна 180°.

Следствие 2. Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой (см. рис.2).

Замечание. Теорема 2 называется обратной теореме 1. Заключение теоремы 1 является условием теоремы 2. А условие теоремы 1 является заключением теоремы 2. Не всякая теорема имеет обратную, т. е. если данная теорема верна, то обратная теорема может быть неверна.

Поясним это на примере теоремы о вертикальных углах. Эту теорему можно сформулировать так: если два угла вертикальные, то они равны. Обратная ей теорема была бы такой: если два угла равны, то они вертикальные. А это, конечно, неверно. Два равных угла вовсе не обязаны быть вертикальными.

Пример 1. Две параллельные прямые пересечены третьей. Известно, что разность двух внутренних односторонних углов равна 30°. Найти эти углы.

Решение. Пусть условию отвечает рисунок 6.