Построение геометрии с помощью непрерывного ввода объектов. Построение изображения треугольника Серпиньского


I. Введение.

II. Главная часть:

    Построение отрезка, равного произведению двух других с помощью циркуля и линейки:

    1. первый способ построения;

      второй способ построения;

      третий способ построения,

d) четвёртый способ построения.

2) Построение отрезка, равного отношению двух других с помощью циркуля и линейки:

      первый способ построения;

      второй способ построения.

Заключение.

Приложение.

Введение

Геометрические построения, или теория геометрических построений - раздел геометрии, где изучают вопросы и методы построения геометрических фигур, используя те или иные элементы построения. Геометрические построения изучаются как в геометрии Евклида, так и в других геометриях, как на плоскости, так и в пространстве. Классическими инструментами построения являются циркуль и линейка (односторонняя математическая), однако, существуют построения другими инструментами: только одним циркулем, только одной линейкой, если на плоскости начерчена окружность и её центр, только одной линейкой с параллельными краями и.т.д.

Все задачи на построение опираются на постулаты построения, то есть на простейшие элементарные задачи на построение, и задача считается решённой, если она сведена к конечному числу этих простейших задач-постулатов.

Естественно, каждый инструмент имеет свою конструктивную силу - свой набор постулатов. Так, известно, что разделить отрезок, пользуясь только одной линейкой, на две равные части нельзя, а пользуясь циркулем, можно.

Искусство построения геометрических фигур при помощи циркуля и линейки было в высокой степени развито в древней Греции. Одна из труднейших задач на построение, которую уже тогда умели выполнить, - построение окружности, касающейся трёх данных окружностей.

В школе изучают ряд простейших построений циркулем и линейкой (односторонней без делений): построение прямой, проходящей через заданную точку и перпендикулярной или параллельной данной прямой; деление пополам заданного угла, деление отрезка на несколько равных частей, используя теорему Фалеса (по сути дела - деление отрезка на натуральное число); построение отрезка большего данного в целое число раз (по сути -умножение отрезка на натуральное число). Однако, нами нигде не встречалась задача, где надо было бы с помощью циркуля и линейки умножить отрезок на отрезок, то есть построить отрезок, равный произведению двух данных отрезков, или деление отрезка на отрезок, то есть построить отрезок, равный отношению двух других отрезков. Нам показалась данная проблема очень интересной, и мы решили её исследовать, попытаться найти решение и возможность применения найденного метода решения к решению других задач, например, в математике и физике.

При решении задач на построение традиционная методика рекомендует нам четыре этапа: анализ, построение, доказательство и исследование. Однако, указанная схема решения задач на построение считается весьма академичной, и для её осуществления требуется много времени, поэтому часто отдельные этапы традиционной схемы решения задачи опускаются, например, этапы доказательства, исследования. В своей работе по возможности мы использовали все четыре этапа, да и то только там, где была в этом необходимость и целесообразность.

И последнее: найденный нами метод построения вышеназванных отрезков предполагает использование, помимо циркуля и линейки, произвольно выбранного единичного отрезка. Введение единичного отрезка диктуется ещё и тем, что он необходим хотя бы для того, чтобы подтвердить справедливость найденного нами метода нахождения отрезка на конкретных частных примерах.

ОБЩАЯ ПРОБЛЕМА І

С помощью циркуля и линейки построить отрезок, равный произведению двух других отрезков.

Примечание:

предполагается:

    Линейка - односторонняя, без делений.

    Задан отрезок единичной длины.

Исследование.

1.Рассмотрим прямые y=2x-2 2 и y=3x-3 2 и попробуем найти координаты точки пересечения этих прямых геометрическим и аналитическим методами:

а
) геометрический метод (Рис.1 ) показал, что координаты точки А пересечения этих прямых: «5»-абсцисса, «6»- ордината, т.е. АЕ=5, АД=6.

б) аналитический метод данный результат подтверждает, т.е. А (5;6) - точка пересечения прямых.

Действительно, решив систему уравнений

y=6 А(5;6)- точка пересечения прямых.

2.Рассмотрим отрезок: ОВ=2, ОС=3, АД=6, АЕ=5.

Можно предположить, что АД=ОВ×ОС, т.к. 6=2×3; АЕ=ОВ+ОС, т.к. 5=2+3 ,где

2=ОВ-угловой коэффициент уравнения y=2x-2 2 , 3=ОС - угловой коэффициент уравнения y=3x-3 2 , АД=у А, ОД=х А - координаты точки А пересечения наших прямых.

Наше предположение проверим на общем примере аналитическим методом, т.е. на уравнениях прямых y=mx-m 2 и y=nx-n 2 (где m≠n) проверим, что точка пересечения прямых имеет координаты:

y=nx-n 2 nx-n 2 =mx-m 2 x=(m 2 -n 2)÷(m-n)=m+n и y=mx-m 2 =m(m+n)-m 2 =mn

координаты точки А пересечения прямых, где m и n – угловые коэффициенты этих прямых, ч.т.д.

3. Осталось найти метод построения отрезка. АД=ОВ×ОС=m∙n=y А - ординаты точки А пересечения прямых У=mx-m 2 и У=nx-n 2 , где m≠n и m=OB, n=OC- отрезки, отложенные на оси ох. А для этого мы должны найти метод построения прямых У=mx-m 2 и У=nx-n 2 . из рассуждений видно, что эти прямые должны пройти через точки В и С отрезков OB=m и OC=n, которые принадлежат оси ох.

Замечание 1. Вышеназванные обозначения отрезков соответствуют рис.1 «Приложения»

Первый способ построения отрезка AD=mn, где m>1ед., n>1ед., m≠n.

единичный отрезок

произвольный отрезок, m>1eд., n>1eд.

n произвольный отрезок, где m≠n.

Построение (Рис.2)

    Проведём прямую ОХ

    На ОХ отложим ОА 1 = m

    На ОХ отложим А 1 С 1 =1ед

    Построим С 1 В 1 =m, где С 1 В 1 ┴ ОХ

    Проведём прямую А 1 В 1 , уравнение которой y=mx-m 2 в координатных осях ХОУ (масштаб на осях одинаковый).

Примечание:


Рис.2

Замечание 1.

Действительно, тангенс угла наклона этой прямой tgά 1 = С 1 В 1 /А 1 С 1 =m/1ед=m, которая проходит через точку А 1 отрезка ОА 1 =m.

Анологично строим прямую, уравнение которой У=nx-n 2 .

6.На оси ОХ отложим ОА 2 =n (точка А 2 случайно совпала с точкой С1).

7.На оси ОХ отложим А 2 С 2 =1ед.

8.Строим В 2 С 2 =n, где В 2 С 2 ┴ ОХ.

9.Проведём прямую В 2 А 2 , уравнение которой У=nx-n 2 .

Замечание 2. Действительно, тангенс наклона этой прямой tg ά 2 =C 2 B 2 /A 2 C 2 =n/1ед=n, которая проходит через т. А 2 отрезка ОА 2 =n.

10. Получили т.А (m+n; mn) – точку пересечения прямых У=mx-m 2 и У=nx-n 2

11. Проведем АД, перпендикулярную ох, где Д принадлежит оси ох.

12. Отрезок АД=mn (ордината т. А), т.е. искомый отрезок.

Замечание 3. а) действительно, если в нашем примере, n=4ед., m=3 ед., то должно быть АД=mn=3ед.∙4ед.=12ед. У нас так и получилось: АД=12ед.; б) прямая В 1 В 2 в этом построении не использовалась. В В – тоже.

Существует ещё, по крайней мере, три разных способа построения отрезка АД=mn.

Второй способ построения отрезка АД= mn , где m >1ед, n >1ед, m и n –любые.

Анализ

Анализ ранее построенного чертежа (рис.2), где с помощью найденного способа построения прямых У=mx-m 2 и У=nx-n 2 нашли т.А (m+n; mn) (это первый способ), подсказывает, что т.А(m+n; mn) можно найти построением любой из этих прямых (У=mx-m 2 или У=nx-n 2) и перпендикуляра АД, где АД – перпендикуляр к ОХ, АД=mn, Д принадлежит оси ОХ. Тогда искомая точка А (m+n; mn) является точкой пересечения любой из этих прямых и перпендикуляра АД. Достаточно найти углы наклона этих прямых, тангенсы которых, согласно угловым коэффициентам, равны m и n, т.е. tg ά 1= m и tg ά 2 =n. Учитывая, что tg ά 1 =m/1ед=m и tg ά 2 =n/1ед=n, где 1ед-единичный отрезок, можно легко построить прямые, уравнения которых У=mx-m 2 и У=nx-n 2 .

единичный отрезок

n n>1ед., m и n-любые числа.

П

остроение (Рис.3)

Рис.3

1.Проведём прямую ОХ.

2.На оси ОХ откладываем отрезок ОА 1 =m.

3.На оси ОХ отложим отрезок А 1 Д=n.

4.На оси ОХ отложим отрезок А 1 С 1 =1ед.

5.Строим С 1 В 1 =m, где С 1 В 1 ┴ ОХ.

6.Проведём прямую А1В1, уравнение которой У=mx-m2, в координатных осях ХОУ (масштаб на осях одинаковый).

7.Востанавливаем перпендикуляр к ОХ в точке D.

8.Получаем точку А (m+n; mn) - точку пересечения прямой У=mx-m2 и перпендикуляра AD

9.Отрезок AD=mn, то есть искомый отрезок.

Вывод: Этот второй способ универсальнее первого способа, так как позволяет найти точу А(m+n;mn)и тогда, когда m=n>1ед., тогда координаты этой точки А(2m;m 2) и AD=m 2 .

Другими словами этот метод позволяет найти отрезок, равный квадрату данного, длина которого больше 1ед.

Замечание: Действительно, если в нашем примере m=3ед., n=5ед., то должно быть AD=mn=3ед.×5ед.=15ед. У нас так и получилось: AD=15ед.

Третий способ построения отрезка AD = mn , где m >1ед, n >1ед и m n .

Используя рисунок №2, проведём штриховой линией прямую В 1 В 2 до пересечения с ОХ в точке Е € ОХ, и прямую В 1 В ┴ В 2 С 2 , тогда

В 1 В=С 1 С 2 =ОС 2 -ОС 1 =(n+1ед.)-(m+1ед)=n-m, а В 2 В=В 2 С 2 -В 1 С 1 =m-n => В 1 В=В 2 В=>∆В 1 ВВ 2 - равнобедренный, прямоугольный>∆ЕС 1 В 1 - равнобедренный, прямоугольный => ά=45º

Т.к. ОС 1 =m+1ед., а ЕС 1 =В 1 С 1 =m, то ОЕ=ОС 1 -ЕС 1 =m+1ед.-m=1ед.

Из рассуждений следует, что точки В 1 и В 2 можно найти по-другому, т.к. они являются точками пересечения прямой ЕВ 1 , проведённой под углом ά=45º к оси ОХ и перпендикуляров к ОХ: В 1 С 1 и В 2 С 2 , а ОЕ=1ед.Дальше, используя уже предыдущие методы будем иметь следующий способ построения.

Единичный отрезок.

n n>1ед., и m≠n.

Построение (Рис.4)

1.Проведём прямую ОХ.

5.Построим
ά=С 1 ЕВ 1 =45º, где В 1 - точка пересечения перпендикуляра С 1 В 1 со стороной ά=45º.

7.Отложим ОА 2 =n, где А 2 € ОХ.

8.Отложим А 2 С 2 =1ед., где С 2 € ОХ.

9.Восстановим перпендикуляр С 2 В 2 к оси ОХ в точке С 2 , где В 2 - точка пересечения перпендикуляра с прямой ЕВ 1 .

10.Проводим прямую А 2 В 2 , уравнение которой У=nx-n 2 , до пересечения с прямой А 1 В 1 в точке А.

11.Опускаем на ОХ из точки А перпендикуляр и получаем AD , равный mn, где D € ОХ, так как в координатных плоскостях осях ХОУ координаты точки А(m+n;mn).

Рис.4

Замечание: Недостаток данного способа такой же, как у первого способа построения, где построение возможно только при условии m≠n.

Четвёртый способ построения отрезка AD = mn , где m и n - любые, большие единичного отрезка.

Единичный отрезок.

n n>1ед., m и n- любые.

Построение (Рис.5)

Рис.5

1.Проведём прямую ОХ.

2.Отложим ОЕ=1ед., где Е € ОХ.

3.Отлтжим ЕС 1 =m, где С 1 € ОХ.

4.Восстановим перпендикуляр в точке С 1 к оси ОХ.

5.Построим ά=С 1 ЕВ 1 =45º, где В 1 - точка пересечения перпендикуляра С 1 В 1 со стороной ά=45º.

6.Отложив ОА 1 =m, проводим прямую А 1 В 1 , уравнение которой У=mx-m 2 , А € ОХ.

7.Отложим А 1 D=n, где D € OX.

8.Восстановим перпендикуляр в точке D до пересечения его в точке А с прямой А 1 В 1 , уравнение которой У=mx-m 2 .

9.Отрезок перпендикуляра AD = произведению отрезков m и n, то есть AD=mn, так как А (m+n; mn).

Замечание: Этот способ выгодно отличается от первого и третьего способов, где m≠n, так как имеем дело с любыми отрезками m и n, единичный отрезок может быть меньше только одного из них, участвующего в начале построения (у нас m>1ед.).

Общая проблема ІІ

С помощью циркуля и линейки построить отрезок, равный отношению двух других отрезков.

Примечание:

единичный отрезок меньше отрезка делителя.

Первый способ построения отрезка n = k / m , где m >1ед.

Единичный отрезок.

Построение (Рис.6)

2.На ОУ отложим ОМ=k.

3. На ОХ отложим ОА 1 = m.

4.На ОХ отложим А 1 С 1 =1ед.

5.Построим С 1 В 1 =m, где С 1 В 1 ┴ ОХ.

6. Проведём прямую А 1 В 1 , уравнение которой y=mx-m 2 в координатных осях ХОУ (масштаб на осях одинаковый, равный 1ед.).

7.Восстановим перпендикуляр МА в точке М к оси ОУ, где А- точка пересечения МА с прямой А 1 В 1 (т.е. А € А 1 В 1).

8.Опустим перпендикуляр из точки А на ось ОХ до пересечения его с осью ОХ в точке D. Отрезок AD=ОМ=k=mn.

9.Отрезок А 1 D= n - искомый отрезок, равный n=k/m.

Рис.6

Доказательство:

1.Уравнение прямой А 1 В 1 действительно У=mx-m 2 , при У=0 имеем 0=mx-m 2 => x=m=OA 1, т а угловой коэффициент - tg

2.В ∆АDA 1 tg 1 D=AD/A 1 D=B 1 C 1 /A 1 C 1 =>A 1 D=AD×A 1 C 1 /B 1 C 1 =k×1ед./m=mn/m=n, т.е. А 1 D=n=k/m - искомый отрезок.

Замечание. Действительно, если в нашем примере m=3ед., k=15ед., то должно быть A 1 D=n=k/m=15ед./3ед.=5ед. У нас так и получилось.

Второй способ построения отрезка n = k / m , где m >1ед.

Единичный отрезок.



Рис.7

1.Строим координатные оси ХОУ.

2.На ОУ отложим ОМ=k.

3.Отложим ОЕ=1ед., где Е € ОХ.

4.Отложим ЕС 1 =m, где С 1 € ОХ.

5.Восстановим перпендикуляр в точке С 1 к оси ОХ.

6.Строим С 1 ЕВ 1 =45º, где В 1 - точка пересечения перпендикуляра С 1 В 1 со стороной угла С 1 ЕВ 1 = 45º.

7. На ОХ отложим ОА 1 = m.

8. Проведём прямую А 1 В 1 , уравнение которой y=mx-m 2 в координатных осях ХОУ (масштаб на осях одинаковый, равный 1ед.).

9.Восстановим перпендикуляр МА в точке М к оси ОУ, где А - точка пересечения МА с прямой А 1 В 1 (т.е. А € А 1 В 1).

10.Опустим перпендикуляр из точки А на ось ОХ до пересечения его с осью ОХ в точке D. Отрезок AD=ОМ=k=mn.

11.Отрезок А 1 D=n - искомый отрезок, равный n=k/m.

Доказательство:

1.∆В 1 С 1 Е - прямоугольный и равнобедренный, так как С 1 ЕВ 1 =45º =>В 1 С 1 =ЕС 1 =m.

2.А 1 С 1 =ОС 1 - ОА 1 =(ОЕ+ЕС1) - ОА 1 =1ед+m-m=1ед.

3.Уравнение прямой А 1 В 1 действительно У=mx-m 2 , при У=0 имеем 0=mx-m 2 => x=m=OA 1, а угловой коэффициент - tg

4.В ∆АDA 1 tg 1 D=AD/A 1 D=B 1 C 1 /A 1 C 1 => A 1 D=AD×A 1 C 1 /B 1 C 1 =k ×1ед./m=mn/m=n, т.е. А 1 D=n=k/m - искомый отрезок.

Заключение

В своей работе мы нашли и исследовали различные методы построения с помощью циркуля и линейки отрезка, равного произведению или отношению двух других отрезков, предварительно дав своё определение этим действиям с отрезками, так как ни в одной специальной литературе мы не смогли найти не только определение умножения и деления отрезков, но даже упоминания об этих действиях над отрезками.

Здесь нами было использовано практически все четыре этапа: анализ, построение, доказательство и исследование.

В заключение мы бы хотели отметить возможность применения найденных методов построения отрезков в отдельных разделах физики и математики.

1. Если продлить прямые y=mx-m 2 и y=nx-n 2 (n>m>0) до пересечения с осью ОУ, то можно получить отрезки, равные m 2 , n 2 , n 2 - m 2 (Рис.8) , где ОК=m 2 , ОМ= n 2 , КМ= n 2 - m 2 .

Р
ис.8

Доказательство:

Если х=0, то y=0-m 2 =>ОК=m 2 .

Аналогично доказывается, что ОМ= n 2 =>КМ=ОМ-ОК= n 2 - m 2 .

2. Так как произведение двух отрезков есть площадь прямоугольника со сторонами, равными этим отрезкам, то, найдя отрезок, равный произведению двух других, тем самым мы представляем площадь прямоугольника в виде отрезка, длина которого численно равна этой площади.

3. В механике, термодинамике есть физические величины, например, работа (А=FS,A=PV), численно равные площадям прямоугольников, построенных в соответствующих координатных плоскостях, поэтому в задачах, где требуется, например, сравнить работы по площадям прямоугольников, очень просто это сделать, если эти площади представить в виде отрезков, численно равных площадям прямоугольников. А отрезки легко сравнить между собой.

4. Рассмотренный метод построения позволяет строить и другие отрезки, например, используя систему уравнений y=mx-m 3 и y=nx-n 3 , можно построить отрезки, имея данные m и n такие, как m 2 +mn+n 2 и mn(m+n), так как точка А пересечения прямых, заданных данной системой уравнений, имеет координаты (m 2 +mn+n 2 ; mn(m+n), а также можно построить отрезки n 3 , m 3 , и разность n 3 - m 3 , получаемые на ОУ в отрицательной области при Х=0.

Произведения . ... помощи циркуля и линейки . Алгоритм деления отрезка АВ пополам: 1) поставить ножку циркуля в точку А; 2) установить раствор циркуля равным длине отрезка ...

  • Биография Пифагора

    Биография >> Математика

    ... построением правильных геометрических фигур с помощью циркуля и линейки . ... помощи циркуля и линейки . Со времени возникновения задачи прошло более двух ... равна b/4+p, один катет равен b/4, а другой b/2-p. По теореме Пифагора имеем:(b/4+p)=(b/4)+(b/4-p)или ...

  • Данная статья написана по материалам одного из разделов книги Седжвика, Уэйна и Дондеро "Программирование на языке Python", уже упоминавшейся ранее . Называется этот раздел "Системы итерационных функций", и в нём описано построение различных изображений, таких как треугольник Серпиньского, папоротник Барнсли и некоторых других, с помощью достаточно несложного алгоритма, который, к тому же, ещё и с лёгкостью реализуется.

    Начну я с описания данного алгоритма. Я буду использовать математическую терминологию, в том числе, и ту, которую авторы книги, в ходе своего повествования, не задействуют. Сугубо математический взгляд на алгоритмы облегчает мне их понимание, да и излагать их с помощью математического языка мне достаточно удобно.

    Так что для понимания теоретической части статьи читателю пригодятся знания некоторых разделов математики, которые обычно читаются в технических вузах. А именно, нелишним будет знакомство с теорией вероятностей и элементами математического анализа.

    За теоретической частью статьи будет следовать практическая, описывающая реализацию алгоритма на языке C99. Поскольку результатами работы программы будут являться изображения, мы будем использовать в программе графическую библиотеку pgraph , предполагая, что читатель, хотя бы в общих чертах, с ней знаком.

    Итак, переходим к теоретической части нашего повествования.

    Итерационные функции и случайные последовательности

    Перед тем, как изложить схему, по которой будет вестись построение изображений, поговорим о последовательностях, члены которых вычисляются посредством рекуррентных формул.

    Зададим 2 последовательности, x n n = 1 ∞ и y n n = 1 ∞ , с помощью следующих рекуррентных формул:

    X n = f x n - 1 , y n - 1 , n ∈ ℕ , y n = g x n - 1 , y n - 1 , n ∈ ℕ .

    Поясним, что x 0 и y 0 - это некоторые заранее заданные числа, а f (x , y ) и g (x , y ) - это некоторые функции двух переменных, называемые итерационными . Сам процесс вычисления очередного члена той или иной последовательности через такие функции будем называть итерациями , а приведённый выше набор рекуррентных формул - итерационной схемой.

    Рекурсивный способ задания последовательностей, скорее всего, хорошо знаком читателю, если он изучал математику в вузе. Несколько необычным может показаться "перекрёстный" способ вычисления членов последовательностей, при котором для вычисления n -го члена каждой из двух последовательностей нужен не только n − 1-й член той же последовательности, но и n − 1-й член другой.

    А теперь рассмотрим схему построения членов двух последовательностей, использующую не одну пару итерационных функций, а m пар. Каждая из этих функций будет линейной по обеим переменным, а также будет содержать аддитивную константу. Более конкретно, функции будут иметь вид:

    F k x , y = a k x + b k y + c k g k x , y = d k x + e k y + h k , k = 0 , 1 , … , m - 1 .

    Для каждого n , начиная с 1, будет случайным образом выбираться число от 0 до m − 1, и при вычислении x n и y n в рекуррентных формулах будет использоваться пара итерационных функций, индексы которых равны данному случайному числу. Отметим, что случайные числа, "появляющиеся" перед каждой итерацией, не обязаны быть равновероятными. Однако для разных шагов вероятность появления конкретного фиксированного числа одна и та же.

    Давайте теперь сформулируем сказанное на строгом математическом языке. Рассмотрим последовательность дискретных независимых в совокупности случайных величин T n = 1 ∞ , распределённых по одному и тому же закону. А именно: каждая случайная величина принимает значения 0, 1, …, m − 1 с соответствующими вероятностями p 0 , p 1 , …, p m -1 .

    Теперь последовательности, x n n = 1 ∞ и y n n = 1 ∞ зададим с помощью следующей итерационной схемы:

    X n = f T n x n - 1 , y n - 1 , n ∈ ℕ , y n = g T n x n - 1 , y n - 1 , n ∈ ℕ .

    Как и ранее, x 0 и y 0 - это некоторые заранее заданные числа.

    Таким образом, каждая из последовательностей является случайной, т. е. её члены - это случайные величины. Однако, каждую из этих последовательностей можно "реализовать", т. е. вычислить все её члены (разумеется, таких реализаций будет бесконечно много).

    Зададимся главным вопросом данного раздела. А какое же отношение изображения, которые мы собираемся строить, имеют к этой паре случайных последовательностей? Очень простое. Построим реализацию этих двух последовательностей. Для каждого натурального n пару (x n , y n ) можно рассматривать как координаты точки, заданной в декартовой прямоугольной системе координат на плоскости. Так вот, изображение, соответствующее некоторой паре реализованных последовательностей, представляет собой геометрическое место всех таких точек на плоскости.

    Казалось бы, для каждой реализации пары последовательностей мы будем получать своё изображение, отличное от других. Однако, как это ни парадоксально, получаемые изображения каждый раз будут практически совпадать (т. е. при построении на компьютере будут неразличимы человеческим глазом). А при соответствующем подборе итерационных функций и законов распределения случайных величин, участвующих в формировании членов последовательностей, можно создавать весьма интересные узоры.

    Добавим, что при построении изображений на компьютере, мы, разумеется, будем выполнять лишь конечное (но достаточно большое) число итераций.

    О генерации псевдослучайных чисел

    При написании программы мы столкнёмся с необходимостью генерировать псевдослучайные числа, распределённые, вообще говоря, не равномерно, а по заранее заданному закону. В то же самое время, мы будем располагать лишь программным генератором псевдослучайных чисел, равномерно распределённых на промежутке . Как из второго распределения получить первое?

    Переведём задачу в математическую плоскость. Пусть имеется непрерывная случайная величина U , распределённая равномерно на отрезке . Зададимся целью построить дискретную случайную величину T как функцию от U , таким образом, чтобы T принимала значения 0, 1, …, m − 1 с соответствующими вероятностями p 0 , p 1 , …, p m -1 .

    Решить поставленную задачу весьма просто. Введём в рассмотрение суммы вероятностей

    s k = ∑ i = 0 k - 1 p i , k = 0 , 1 , … , m - 1 .

    Если верхний предел суммирования по i меньше нижнего, то такую сумму по определению будем полагать равной 0.

    Т выразим через U следующим образом:

    T = 0 , если U ∈ s 0 , s 1 , 1 , если U ∈ s 1 , s 2 , 2 , если U ∈ s 2 , s 3 , … … … … … … , … … … … … … , m - 1 , если U ∈ s m - 1 , 1 .

    Очевидно, случайная величина T распределена по требуемому нами закону. Заметим, что, по сути, Т - это номер промежутка, в который попадает случайная величина U (при условии, что промежутки мы нумеруем числами от 0 до m − 1 в порядке возрастания их левых границ).

    С практической точки зрения полученный результат позволяет на каждом шаге итерации в качестве номера итерационных функций брать номер промежутка, в который попадает число, сгенерированное датчиком псевдослучайных чисел, равномерно распределённых на отрезке .

    А теперь можно переходить к написанию программы.

    Структура программы

    Программа состоит из файла main.c и файлов, образующих графическую библиотеку pgraph. Содержимое файла main.c начинается со следующей директивы, подключающей графическую библиотеку:

    #include "pgraph.h"

    Далее в файле содержатся описания глобальных константных переменных и константных массивов. За ними - определения функций get_random_value() и main() . Первая из них генерирует псевдослучайные числа, а вторая выполняет основную работу по построению изображений.

    Глобальные константные переменные и константные массивы

    Вся информация, необходимая для построения конкретного изображения, содержится в глобальных константных переменных и константных массивах. Разумеется, для каждого изображения набор значений констант и элементов константных массивов будет "свой".

    Ниже приводятся описания данных констант и массивов.

    • n - количество итераций;
    • w - ширина изображения в пикселях;
    • h - высота изображения в пикселях;
    • xc - абсцисса начала новой системы координат в старой системе;
    • yc - ордината начала новой системы координат в старой системе;
    • l - длина в пикселях отрезка, параллельного одной из осей координат, имеющего в новой системе координат единичную длину;
    • m - количество пар итерационных функций, т. е. число m ;
    • s - одномерный массив размера m , содержащий суммы вероятностей случайных величин T n (k -й элемент массива содержит s k );
    • f - двухмерный массив, состоящий из m f k (x , y k , 0), (k , 1), (k , 2) содержат числа a k , b k , c k соответственно, где 0 ≤ k m − 1);
    • g - двухмерный массив, состоящий из m "строк" и 3-х "столбцов", содержащий константы, задействованные в функциях g k (x , y ) (элементы массива с индексами (k , 0), (k , 1), (k , 2) содержат числа d k , e k , h k соответственно, где 0 ≤ k m − 1).

    Все переменные имеют тип int , а базовым типом всех массивов является double .

    Поясним, что под "старой" системой координат подразумевается та, которая определена в библиотеке pgraph. Построения всех изображений будут вестись в новой системе, полученной из старой параллельным переносом (сдвиги по осям абсцисс и ординат равны соответственно x c и y c ) и "сжатием" в l раз. Таким образом, точка, имеющая в новой системе координаты (x , y ), в старой будет иметь координаты (x l + x c , y l + y c ). Излишне, думаю, пояснять, что за хранение чисел x c , y c и l ответственны константные переменные xc , yc и l соответственно.

    Для хранения чисел x 0 и y 0 переменные не выделяются, поскольку во всех случаях построения изображений в качестве этих чисел берутся нули.

    Генерация псевдослучайных чисел: функция get_random_value()

    Функция get_random_value() при каждом обращении к ней генерирует псевдослучайное целое число в диапазоне от 0 до m − 1 в соответствии с описанной ранее схемой . Вот код этой функции:

    1. int get_random_value() 2. { 3. double r = (double ) rand() / RAND_MAX; 4. int c = 1 ; 5. while (s[c] < r && ++c < m) 6. ; 7. return c - 1 ; 8. }

    Получаем с помощью стандартной библиотечной функции rand() псевдослучайное число в диапазоне от 0 до значения макроса RAND_MAX , делим полученный результат на это значение и присваиваем частное переменной r (стр. 3). Теперь в r хранится число, принадлежащее отрезку . Его приближённо можно считать значением случайной величины, равномерно распределённой на этом отрезке.

    Поясним, что значение макроса RAND_MAX , в нашем случае (т. е. в случае использования компилятора MinGW64 версии 4.9.2 для 64-битных систем) равно 32767.

    Теперь, с помощью линейного поиска, задействующего цикл while , ищем индекс наибольшего элемента массива s , не превосходящего значение r , увеличенный на единицу, и сохраняем его в переменной c (см. стр. 4-6). Отметим, что в случае, если значение r - нулевое, цикл не выполняется ни разу, а переменная с сохраняет единичное значение (см. стр. 4).

    Значение, возвращаемое функцией, можно приближённо рассматривать как значение случайной величины T , описанной в упомянутом выше разделе.

    Генерация изображения: функция main()

    А вот и код функции main() :

    1. int main() 2. { 3. image *img = create_image(w, h); 4. double x = 0 , y = 0 ; 5. for (int i = 0 ; i < n; i++) 6. { 7. int r = get_random_value(); 8. double x1 = f[r] * x + f[r] * y + f[r]; 9. double y1 = g[r] * x + g[r] * y + g[r]; 10. x = x1; 11. y = y1; 12. set_color(img, round(x * l) + xc, round(y * l) + yc, BLACK); 13. } 14. save_to_file(img, "out.bmp" ); 15. free(img); 16. return 0 ; 17. }

    Создаём изображение с заданными размерами (стр. 3). Выделяем память под переменные x и y , в которых будут храниться текущие члены последовательностей, и инициализируем их нулями (стр. 4). Напомню, что в качестве чисел x 0 и y 0 , участвующих в вычислении первых членов каждой из последовательностей, берутся нули.

    Вычисляем в цикле for первые n членов каждой последовательности (стр. 5-13). Получаем сначала псевдослучайное число и записываем его в r (стр. 7). Далее вычисляем текущие значения членов обеих последовательностей, помещая их во временные переменные x1 и y1 (стр. 8, 9). При вычислении используем константы, фигурирующие в итерационных функциях и хранящиеся в массивах f и g . Выбор той или иной пары наборов коэффициентов (а значит, пары итерационных функций) зависит от значения r , использующегося в качестве первых индексов участвующих в вычислениях элементов массивов.

    Переписываем вычисленные текущие значения в переменные x и y (стр. 10, 11). Координаты точки, содержащиеся в этих переменных, переводим в координаты исходной системы координат, округляем до целых и наносим точку с результирующими координатами на изображение чёрным цветом (стр. 12).

    По завершении цикла сохраняем сформированное изображение в файле "out.bmp" (стр. 14) и освобождаем занимаемую изображением память (стр. 15). На этом работа функции завершается.

    Построение изображения треугольника Серпиньского

    Треугольник Серпиньского представляет собой множество точек, получаемого из всех точек некоторого исходного равностороннего треугольника следующим образом. Треугольник разбивается тремя средними линиями на 4 треугольника, после чего "центральный" треугольник удаляется. Далее c каждым из оставшихся трёх равносторонних треугольников выполняется та же операция. Наконец, то же самое мы делаем с получившимися девятью равносторонними треугольниками.

    Продолжая описанные операции до бесконечности, удаляем, в итоге, из исходного треугольника бесконечное число равносторонних треугольников, сумма площадей которых равна площади исходного. Оставшиеся точки образуют линию, называемую треугольником Серпиньского , играющую важную роль в теории множеств.

    В книге Седжвика и других авторов предлагается следующий способ построения изображения треугольника Серпиньского. Рассмотрим 3 точки на плоскости, являющиеся вершинами равностороннего треугольника, например, точки с координатами 0 , 0 , 0 , 1 , 1 / 2 , 3 / 2 в декартовой прямоугольной системе координат. Выбираем наугад (с равными вероятностями) одну из трёх вершин треугольника и строим точку, делящую отрезок, соединяющий вершину с координатами 0 , 0 и выбранную наугад вершину, пополам. Это первая точка нашего изображения.

    Приведённый алгоритм можно уложить в описанную ранее схему построения изображений, задействующую случайные последовательности и итерационные функции.

    Нам потребуются 3 пары итерационных функций. Их индексы 0, 1, 2 должны выбираться с вероятностями 1/3, 1/3, 1/3 соответственно. Сами итерационные функции приведены ниже.

    F 0 x , y = 1 / 2 x , g 0 x , y = 1 / 2 y , f 1 x , y = 1 / 2 x + 1 / 2 , g 1 x , y = 1 / 2 y , f 2 x , y = 1 / 2 x + 1 / 4 , g 2 x , y = 1 / 2 y + 3 / 4 .

    Теперь давайте вставим в нашу программу описания глобальных константных переменных и константных массивов, соответствующие данным вероятностям и данным итерационным функциям. Но для начала определим макрос TRIANGLE , поместив в файл main.с после инструкции #include следующую инструкцию

    #define TRIANGLE

    После инструкции вставляем в файл следующий код:

    //Треугольник Серпиньского #ifdef TRIANGLE const int n = 100000 ; //количество итераций const int w = 620 , h = 550 ; //размеры изображения const int xc = 10 , yc = 10 ; //координаты начала новой системы координат в старой const int l = 600 ; //коэффициент сжатия const int m = 3 ; //количество пар итерационных функций const double s = {0 , 0.3333333 , 0.6666667 }; //массив сумм вероятностей const double f = {{0.5 , 0.0 , 0.0 }, //массив коэффициентов для функций f(x,y), {0.5 , 0.0 , 0.5 }, //задействованных для вычислений x {0.5 , 0.0 , 0.25 }}; const double g = {{0.0 , 0.5 , 0.0 }, //массив коэффициентов для функций g(x,y), {0.0 , 0.5 , 0.0 }, //задействованных для вычислений y {0.0 , 0.5 , 0.4330127 }}; #endif

    Приведённый фрагмент кода (без директив препроцессора) будет скомпилирован только в случае, если определён макрос TRIANGLE (а он определён). Разумеется, константы, представимые лишь с помощью бесконечных десятичных дробей (рациональных или иррациональных) мы округляли.

    В результате компиляции и выполнения программы в корневой директории исполняемого файла появляется графический файл out.bmp, содержащий следующее изображение:

    Построение изображения папоротника Барнсли

    Следующее изображение, построение которого описывается в книге Седжвика и других, - это изображение папоротника Барнсли. Теперь нам уже потребуются 4 пары итерационных функций. Их индексы 0, 1, 2, 3 будут выбираться с вероятностями 0,01, 0,85, 0,07, 0,07 соответственно. А вот и сами итерационные функции:

    F 0 x , y = 0 , 5 , g 0 x , y = 0 , 16 y , f 1 x , y = 0 , 85 x + 0 , 04 y + 0 , 075 , g 1 x , y = - 0 , 04 x + 0 , 85 y + 0 , 18 , f 2 x , y = 0 , 2 x - 0 , 26 y + 0 , 4 , g 2 x , y = 0 , 23 x + 0 , 22 y + 0 , 045 , f 3 x , y = - 0 , 15 x + 0 , 28 y + 0 , 575 , g 3 x , y = 0 , 26 x + 0 , 24 y - 0 , 086 .

    Вносим теперь изменения в программу. Инструкцию #define заменяем инструкцией

    #define FERN

    А после #ifdef -блока помещаем следующий фрагмент кода:

    //Папоротник Барнсли #ifdef FERN const int n = 100000 ; const int l = 600 ; const int m = 4 ; const double s = {0 , 0.01 , 0.86 , 0.93 }; const double f = {{0.0 , 0.0 , 0.5 }, {0.85 , 0.04 , 0.075 }, {0.2 , -0.26 , 0.4 }, {-0.15 , 0.28 , 0.575 }}; const double g = {{0.0 , 0.16 , 0.0 }, {-0.04 , 0.85 , 0.18 }, {0.23 , 0.22 , 0.045 }, {0.26 , 0.24 , -0.086 }}; #endif

    Результатом компиляции и запуска программы является следующее изображение:

    Построение изображения дерева

    Теперь построим то, что в книге Седжвика и других авторов называется "деревом", хотя то, что оказывается изображённым, скорее, похоже на набор деревьев различных размеров. На этот раз в итерационном процессе будут участвовать 6 пар итерационных функций. Их индексы 0, 1, 2, 3, 4, 5 будут выбираться с вероятностями 0,1, 0,1, 0,2, 0,2, 0,2, 0,2 соответственно. Вот эти функции:

    F 0 x , y = 0 , 55 , g 0 x , y = 0 , 6 y , f 1 x , y = - 0 , 05 x + 0 , 525 , g 1 x , y = - 0 , 5 x + 0 , 75 , f 2 x , y = 0 , 46 x - 0 , 15 y + 0 , 27 , g 2 x , y = 0 , 39 x + 0 , 38 y + 0 , 105 , f 3 x , y = 0 , 47 x - 0 , 15 y + 0 , 265 , g 3 x , y = 0 , 17 x + 0 , 42 y + 0 , 465 , f 4 x , y = 0 , 43 x + 0 , 26 y + 0 , 29 , g 4 x , y = - 0 , 25 x + 0 , 45 y + 0 , 625 , f 5 x , y = 0 , 42 x + 0 , 26 y + 0 , 29 , g 5 x , y = - 0 , 35 x + 0 , 31 y + 0 , 525 .

    #define TREE

    За последним #ifdef -блоком вставляем следующий код:

    //Дерево #ifdef TREE const int n = 100000 ; const int w = 620 , h = 620 ; const int xc = 0 , yc = 10 ; const int l = 600 ; const int m = 6 ; const double s = {0 , 0.1 , 0.2 , 0.4 , 0.6 , 0.8 }; const double f = {{0.0 , 0.0 , 0.55 }, {-0.05 , 0.0 , 0.525 }, {0.46 , -0.15 , 0.27 }, {0.47 , -0.15 , 0.265 }, {0.43 , 0.26 , 0.29 }, {0.42 , 0.26 , 0.29 }}; const double g = {{0.0 , 0.6 , 0.0 }, {-0.5 , 0.0 , 0.75 }, {0.39 , 0.38 , 0.105 }, {0.17 , 0.42 , 0.465 }, {-0.25 , 0.45 , 0.625 }, {-0.35 , 0.31 , 0.525 }}; #endif

    Результат работы скомпилированной программы - это изображение, приведённое ниже:

    Последнее изображение, которое мы построим, руководствуясь книгой Седжвика, - это изображение коралла. Нам потребуются 3 пары итерационных функций. Их индексы 0, 1, 2 будут выбираться с вероятностями 0,4, 0,15, 0,45 соответственно. Итерационные функции приведены ниже.

    F 0 x , y = 0 , 3077 x - 0 , 5315 y + 0 , 8863 , g 0 x , y = - 0 , 4615 x - 0 , 2937 y + 1 , 0962 , f 1 x , y = 0 , 3077 x - 0 , 0769 y + 0 , 2166 , g 1 x , y = 0 , 1538 x - 0 , 4476 y + 0 , 3384 , f 2 x , y = 0 , 5455 y + 0 , 0106 , g 2 x , y = 0 , 6923 x - 0 , 1958 y + 0 , 3808 .

    Заменяем инструкцию #define инструкцией

    #define CORAL

    За последним #ifdef -блоком вставляем новый блок:

    //Коралл #ifdef CORAL const int n = 100000 ; const int w = 620 , h = 620 ; const int xc = 10 , yc = 10 ; const int l = 600 ; const int m = 3 ; const double s = {0 , 0.4 , 0.55 }; const double f = {{0.3077 , -0.5315 , 0.8863 }, {0.3077 , -0.0769 , 0.2166 }, {0.0 , 0.5455 , 0.0106 }}; const double g = {{-0.4615 , -0.2937 , 1.0962 }, {0.1538 , -0.4476 , 0.3384 }, {0.6923 , -0.1958 , 0.3808 }}; #endif

    Вот какое изображение получаем в результате компиляции и выполнения программы:

    Заключение

    Не знаю, как вам, а мне было интересно наблюдать за тем, как наборы математических формул "превращается" в весьма забавные изображения. А ещё меня удивляет то, что те, кто всё это придумали, смогли подобрать вероятности и константы, участвующие в итерационных функциях, таким образом, чтобы добиться таких удивительных картин! Методика подбора всех этих чисел (за исключением случая треугольника Серпиньского) мне совершенно непонятна!

    Отмечу, что, судя по изображениям, треугольник Серпиньского и папоротник Барнсли являются фракталами. Скорее всего, то же самое можно сказать про "дерево" и "коралл", но их фрактальная природа, пожалуй, чуть менее очевидна.

    По приведённой ниже ссылке, как всегда, можно скачать исходный код рассмотренной в статье программы. В файле main.c имеются четыре инструкции #define , каждая из которых соответствует одному из четырёх изображений. Три из них закомментированы. Ясно, что для того, чтобы перейти от одного изображения к другому, требуется закомментировать незакомментированную инструкцию и раскомментировать одну из закомментированных. Ну, Вы поняли...

    А ещё с помощью несложного алгоритма можно добиться того, чтобы рассмотренные в статье изображения плавно "превращались" друг в друга. Но это уже тема для отдельной статьи .




















    Назад Вперёд

    Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

    Учебник: Геометрия, 7-9: учебник для общеобразовательных учреждений / (Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.) – 16 изд. – М.: Просвещение, 2011.

    Цели урока:

    1. дать представление о новом классе задач на построение;
    2. рассмотреть наиболее простые задачи на построение;
    3. научить учащихся решать такие задачи.

    Задачи:

    Образовательный аспект:

        • дать представление о новом классе задач – построение геометрических с помощью циркуля и линейки без масштабных делений;
        • формировать практические умения работы;
        • расширить знания об истории геометрии.

    Развивающий аспект:

    • развитие навыков самоконтроля;
    • формирование ИКТ – компетентности;
    • формирование логического мышления.

    Воспитательный аспект:

    • воспитание ответственного отношения к учебному труду, воли и настойчивости для достижения конечных результатов при изучении темы;
    • воспитание интереса к истории математики, как науки.

    Тип урока: комбинированный.

    Формы организации учебной деятельности: индивидуальная, коллективная.

    Этапы урока:

    • подготовка к активной учебной деятельности;
    • применение знаний;
    • подведение итогов и рефлексия;
    • информация о домашнем задании.

    Оборудование:

    • Учебное пособие, тетрадь, карандаш, авторучка, линейка, циркуль, раздаточный материал (КИМ);
    • Компьютер, с минимальными техническими требованиями: Windows 95/98/ME/NT/2000/XP, 7.
    • Муьтимедийный проектор, экран.

    Ресурсы урока:

    • тестовые задания (КИМ) приложение 1 ;
    • презентация;
    • оценка степени усвоения материала приложение 3 .

    План урока:

    Этап урока Цель урока Время
    1. Организационный момент(слайды 1-2) Сообщение темы урока;Постановка цели урока;Сообщение этапов урока. 2 мин.
    2. Повторение. Проверка домашнего задания.(слайд 3) Проверка теоретических знаний учащихся по теме окружность при выполнении теста. 5 мин.
    3. Подготовка учащихся к восприятию нового материала.(слайды 4-8) Актуализация опорных знаний 10 мин.
    4. Изучение нового материала(слайды 9-19) Отработка навыков решения простейших задач на построение циркулем и линейкой, рассмотренных в учебнике. 25 мин.
    5. Итог урока. Подведение итогов урока. 2 мин.
    6. Домашнее задание.(слайд 20) Инструктаж по домашнему заданию. 1 мин.

    ХОД УРОКА

    1. Организационный момент:

    Тема сегодняшнего урока - «Примеры задач на построение» (слайд 1).

    Цель урока – рассмотреть наиболее простые задачи на построение, которые решаются только с помощью циркуля и линейки без делений; научиться решать их (слайд 2).

    2. Повторение. Проверка домашнего задания:

    Мы с вами изучили тему « Окружность» и сегодня проверим с помощью теста ваши знания. Выполнить задание теста (каждому раздаются КИМы с тестовым заданием). Для каждого вопроса выберите правильный вариант ответа. Самостоятельно оцените свои знания, подсчитав количество верных ответов. Если верных ответов 6 - оценка «5», если верных ответов 5 – оценка «4», если верных ответов 4 – оценка «3», меньшее количество верных ответов – оценка « 2».

    (Верные ответы на слайде 3 презентации).

    3. Подготовка учащихся к восприятию нового материала:

    Вводная беседа учителя:

    Мы уже имели дело с геометрическими построениями: проводили прямые, откладывали отрезки, равные данным, чертили углы, треугольники и другие фигуры с помощью различных инструментов. При построении отрезка заданной длины использовалась линейка с миллиметровыми делениями, а при построении угла заданной градусной меры – транспортир.

    В домашней работе у вас была такая задача:

    Начертите треугольник АВС такой, что АВ = 3,6 см, АС = 2,7 см, А = 48°. Какие инст рументы вы использовали для решения этой задачи?

    Итак, мы использовали линейку с миллиметровыми делениями и транспортир. Но есть такие задачи, в которых бывает оговорено, с помощью каких инструментов нужно построить предлагаемую геометрическую фигуру (слайд 4-5).

    Задача 1. С помощью циркуля и линейки без делений на данном луче от его начала отложить отрезок, равный данному. Чертёж на экране.

    (Учащиеся предлагают варианты решений).

    А теперь проверим ваше решение (см. слайд 6)

    Таким образом, многие построения в геометрии могут быть выполнены с помощью только циркуля и линейки без делений (слайд 7).

    В дальнейшем, говоря о задачах на построение, мы будем иметь в виду именно такие построения.

    Задачи на построение циркулем и линейкой являются традиционным материалом, изучаемым в курсе планиметрии. Обычно эти задачи решаются по схеме, состоящей из четырех частей (посмотреть с. 95–96 учебника). Сначала рисуют (чертят) искомую фигуру и устанавливают связи между данными задачи и искомыми элементами. Эта часть решения называется анализом . Она дает возможность составить план решения задачи.

    Затем по намеченному плану выполняется построение циркулем и линейкой.

    После этого нужно доказать , что построенная фигура удовлетворяет условиям задачи.

    И наконец, необходимо исследовать , при любых ли данных задача имеет решение, и если имеет, то сколько решений.

    В тех случаях, когда задача достаточно простая, отдельные части, например анализ или исследование, можно опустить (слайд 8).

    В VII классе мы решим простейшие задачи на построение циркулем и линейкой, в других классах будем решать более сложные задачи.

    4. Изучение нового материала:

    И так, наша задача – выполнить задачи на построение только с помощью двух инструментов: циркуля и линейки без масштабных делений.

    Что можно делать с их помощью? Ясно, что линейка позволяет провести произвольную прямую, а также построить прямую, проходящую через две данные точки. С помощью циркуля можно провести окружность произвольного радиуса, а также окружность с центром в данной точке и радиусом, равным данному отрезку (слайд 9).

    Выполняя эти несложные операции, мы сможем решить много интересных задач на построение (слайд 10):

    1. На данном луче от его начала отложить отрезок, равный данному.
    2. Отложить от данного луча угол, равный данному.
    3. Построить биссектрису данного неразвернутого угла.
    4. Построить прямую, проходящую через данную точку и перпендикулярную к прямой, на которой лежит данная точка.
    5. Построить середину данного отрезка.

    Мы уже решили задачу № 1.

    Теперь с помощью компьютера рассмотрим решение задачи № 2. Выполняйте соответствующие построения в тетради (слайды 11-12).

    А теперь рассмотрим задачи № 3 – 5 (слайд 13-18).

    (выполняются соответствующие построения и описания задач в тетради)

    После выполнения работы, учитель обращает внимание учащихся на то, что такие задачи рассматривались в древности (слайд 19).

    А теперь обратимся к истории геометрии. Древнегреческие математики достигли чрезвычайно большого искусства в геометрических построениях с помощью циркуля и линейки. Они доказали, что угол можно разделить и на четыре равных угла. Для этого нужно разделить его пополам, а затем построить биссектрису каждой половинки. А можно ли с помощью циркуля и линейки разделить угол на три равные части? Эта задача, получившая название задачи о трисекции угла, в течение многих веков привлекала внимание математиков. Однако она не поддавались их усилиям. Лишь в прошлом веке было доказано, что для произвольного угла такое построение невозможно.

    Есть и другие задачи на построение, про которые известно, что они неразрешимы с помощью циркуля и линейки. Я предлагаю вам самостоятельно найти материал, содержащий информацию для ознакомления с этими задачами.

    5. Подведение итогов урока:

    Мы изучили много нового, узнали какие задачи можно решить только с помощью циркуля и линейки. У вас у каждого лежит лист с вопросами. Оцените свою работу на сегодняшнем уроке, выбрав один из предложенных вариантов ответа.

    1. Оцените степень сложности урока. Вам было на уроке:
      • легко;
      • обычно;
      • трудно
    2. Оцените степень вашего усвоения материала:
      • усвоил полностью, могу применить;
      • усвоил полностью, но затрудняюсь в применении;
      • усвоил частично;
      • не усвоил.

    Собрать листочки для оценки степени усвоения материала сегодняшнего урока, чтобы на следующем уроке правильно организовать работу. Сообщаются оценки за урок, включая оценки за тест по теме « Окружность».

    6. Домашнее задание:

    • ответить на вопросы 17–21 на стр. 50;
    • решить задачи №№ 153, 154 (слайд 20).

    Если вполне естественно, что с допущением большего разнообразия инструментов оказывается возможным решать более обширное множество задач на построение, то можно было бы предвидеть, что, напротив, при ограничениях, налагаемых на инструменты, класс разрешимых задач будет суживаться. Тем более замечательным нужно считать открытие, сделанное итальянцем Маскерони (1750-1800): все геометрические построения, выполнимые с помощью циркуля и линейки, могут быть выполнены с помощью одного только циркуля. Следует, конечно, оговорить, что провести на самом деле прямую линию через две данные точки без линейки невозможно, так что это основное построение не покрывается теорией Маскерони. Вместо того приходится считать, что прямая задана, если заданы две ее точки. Но с помощью одного лишь циркуля удается найти точку пересечения двух прямых, заданных таким образом, или точку пересечения прямой с окружностью.

    Вероятно, простейшим примером построения Маскерони является удвоение данного отрезка Решение было уже дано на стр. 185. Далее, на стр. 186 мы научились делить данный отрезок пополам. Посмотрим теперь, как разделить пополам дугу окружности с центром О. Вот описание этого построения. Радиусом проводим две дуги с центрами От точки О откладываем на этих дугах две такие дуги и что Затем находим точку пересечения дуги с центром Р и радиусом и дуги с центром и радиусом Наконец, взяв в качестве радиуса отрезок опишем дугу с центром Р или до пересечения с дугой точка пересечения и является искомой средней точкой дуги Доказательство предоставляем читателю в качестве упражнения.

    Рис. 48. Пересечение окружности и прямой, не проходящей через центр

    Было бы невозможно доказать основное утверждение Маскерони, указывая для каждого построения, выполнимого с помощью циркуля и линейки, как его можно выполнить с помощью одного циркуля: ведь возможных построений бесчисленное множество. Но мы достигнем той же цели, если установим, что каждое из следующих основных построений выполнимо с помощью одного циркуля:

    1. Провести окружность, если заданы центр и радиус.

    2. Найти точки пересечения двух окружностей.

    3. Найти точки пересечения прямой и окружности.

    4. Найти точку пересечения двух прямых.

    Любое геометрическое построение (в обычном смысле, с допущением циркуля и линейки) составляется из выполнения конечной последовательности этих элементарных построений. Что первые два из них выполнимы с помощью одного циркуля, ясно непосредственно. Более трудные построения 3 и 4 выполняются с использованием свойств инверсии, рассмотренных в предыдущем пункте.

    Обратимся к построению 3: найдем точки пересечения данной окружности С с прямой, проходящей через данные точки Проведем дуги с центрами и радиусами, соответственно равными и кроме точки О, они пересекутся в точке Р. Затем построим точку обратную точке Р относительно окружности С (см. построение, описанное на стр. 186). Наконец, проведем окружность с центром и радиусом (она непременно пересечется с С): его точки пересечения с окружностью С и будут искомыми. Для доказательства достаточно установить, что каждая из точек находится на одинаковых расстояниях от (что касается точек то аналогичное их свойство сразу вытекает из построения). Действительно, Достаточно сослаться на то обстоятельство, что точка, обратная точке отстоит от точек на расстояние, равное радиусу окружности С (см. стр. 184). Стоит отметить, что окружность, проходящая через точки является обратной прямой в инверсии относительно круга С, так как эта окружность и прямая пересекаются

    Рис. 49. Пересечение окружности и прямой, проходящей через центр

    с С в одних и тех же точках. (При инверсии точки основной окружности остаются неподвижными.)

    Указанное построение невыполнимо только в том случае, если прямая проходит через центр С. Но тогда точки пересечения могут быть найдены посредством построения, описанного на стр. 188, как получающихся, когда мы проводим произвольную окружность с центром В, пересекающуюся с С в точках Метод проведения окружности, обратной прямой, соединяющей две данные точки, немедленно дает и построение, решающее задачу 4. Пусть прямые даны точками (рис. 50).

    Рис. 50. Пересечение двух прямых

    Проведем произвольную окружность С и с помощью указанного выше метода построим окружности, обратные прямым и Эти окружности пересекаются в точке О и еще в одной точке Точка X, обратная точке и есть искомая точка пересечения: как ее построить - уже было разъяснено выше. Что X есть искомая точка, это ясно из того факта, что есть единственная точка, обратная точке, одновременно принадлежащей обеим прямым и следовательно, точка X, обратная должна лежать одновременно и на и на

    Этими двумя построениями заканчивается доказательство эквивалентности между построениями Маскерони, при которых разрешается пользоваться только циркулем, и обыкновенными геометрическими построениями с циркулем и линейкой.

    Мы не заботились об изяществе решения отдельных проблем, нами здесь рассмотренных, так как нашей целью было выяснить внутренний смысл построений Маскерони. Но в качестве примера мы еще укажем построение правильного пятиугольника; точнее говоря, речь идет о нахождении каких-то пяти точек на окружности, которые могут служить вершинами правильного вписанного пятиугольника.

    Пусть А - произвольная точка на окружности К. Так как сторона правильного вписанного шестиугольника равна радиусу круга, то не представит труда отложить на К такие точки что

    Энциклопедичный YouTube

      1 / 5

      Построения циркулем и линейкой, часть 1.

      1 Простейшие построения циркулем и линейкой

      Science show. Выпуск 19. Циркуль и линейка

      Геометрия - Построение правильного треугольника

      Геометрия - Построение восьмиугольника

      Субтитры

    Примеры

    Задача на бисекцию . С помощью циркуля и линейки разбить данный отрезок AB на две равные части. Одно из решений показано на рисунке:

    • Циркулем проводим окружности с центром в точках A и B радиусом AB .
    • Находим точки пересечения P и Q двух построенных окружностей (дуг).
    • По линейке проводим отрезок или линию, проходящую через точки P и Q .
    • Находим искомую середину отрезка AB - точку пересечения AB и PQ .

    Формальное определение

    В задачах на построение рассматриваются множество следующих объектов: все точки плоскости, все прямые плоскости и все окружности плоскости. В условиях задачи изначально задается (считается построенными) некоторое множество объектов. К множеству построенных объектов разрешается добавлять (строить):

    1. произвольную точку;
    2. произвольную точку на заданной прямой;
    3. произвольную точку на заданной окружности;
    4. точку пересечения двух заданных прямых;
    5. точки пересечения/касания заданной прямой и заданной окружности;
    6. точки пересечения/касания двух заданных окружностей;
    7. произвольную прямую, проходящую через заданную точку
    8. прямую, проходящую через две заданные точки;
    9. произвольную окружность с центром в заданной точке
    10. произвольную окружность с радиусом, равным расстоянию между двумя заданными точками.
    11. окружность с центром в заданной точке и с радиусом, равным расстоянию между двумя заданными точками.

    Требуется с помощью конечного количества этих операций построить другое множество объектов, находящееся в заданном соотношении с исходным множеством.

    Решение задачи на построение содержит в себе три существенные части:

    1. Описание способа построения заданного множества.
    2. Доказательство того, что множество, построенное описанным способом, действительно находится в заданном соотношении с исходным множеством. Обычно доказательство построения производится как обычное доказательство теоремы, опирающееся на аксиомы и другие доказанные теоремы.
    3. Анализ описанного способа построения на предмет его применимости к разным вариантам начальных условий, а также на предмет единственности или неединственности решения, получаемого описанным способом.

    Известные задачи

    Другая известная и неразрешимая с помощью циркуля и линейки задача - построение треугольника по трём заданным длинам биссектрис . Интересно, что эта задача остаётся неразрешимой даже при наличии инструмента, выполняющего трисекцию угла .

    Допустимые отрезки для построения с помощью циркуля и линейки

    С помощью этих инструментов возможно построение отрезка, который по длине:

    Для построения отрезка с длиной численно равной произведению, частному и квадратному корню из длин заданных отрезков необходимо задание на плоскости построения единичного отрезка (то есть отрезка длины 1). Извлечение корней из отрезков с иными натуральными степенями, не являющимися степенью числа 2, невозможны с помощью циркуля и линейки. Так, например, невозможно при помощи циркуля и линейки из единичного отрезка построить отрезок длиной . Из этого факта, в частности, следует неразрешимость задачи об удвоении куба.

    Возможные и невозможные построения

    С формальной точки зрения, решение любой задачи на построение сводится к графическому решению некоторого алгебраического уравнения , причем коэффициенты этого уравнения связаны с длинами заданных отрезков. Поэтому можно сказать, что задача на построение сводится к отысканию действительных корней некоторого алгебраического уравнения.

    Поэтому удобно говорить о построении числа - графического решения уравнения определенного типа.

    Исходя из возможных построений отрезков возможны следующие построения:

    • Построение решений линейных уравнений .
    • Построение решений уравнений, сводящихся к решениям квадратных уравнений .

    Иначе говоря, возможно строить лишь отрезки, равные арифметическим выражениям с использованием квадратного корня из исходных чисел (заданных длин отрезков).

    Важно отметить, что существенно, что решение должно выражаться при помощи квадратных корней, а не радикалов произвольной степени. Если даже алгебраическое уравнение имеет решение в радикалах, то из этого не следует возможность построения циркулем и линейкой отрезка, равного его решению. Простейшее такое уравнение: x 3 − 2 = 0 , {\displaystyle x^{3}-2=0,} связанное со знаменитой задачей на удвоение куба, сводящаяся к этому кубическому уравнению. Как было сказано выше, решение этого уравнения ( 2 3 {\displaystyle {\sqrt[{3}]{2}}} ) невозможно построить циркулем и линейкой.

    Возможность построить правильный 17-угольник следует из выражения для косинуса центрального угла его стороны:

    cos ⁡ (2 π 17) = − 1 16 + 1 16 17 + 1 16 34 − 2 17 + {\displaystyle \cos {\left({\frac {2\pi }{17}}\right)}=-{\frac {1}{16}}\;+\;{\frac {1}{16}}{\sqrt {17}}\;+\;{\frac {1}{16}}{\sqrt {34-2{\sqrt {17}}}}\;+\;} + 1 8 17 + 3 17 − 34 − 2 17 − 2 34 + 2 17 , {\displaystyle +{\frac {1}{8}}{\sqrt {17+3{\sqrt {17}}-{\sqrt {34-2{\sqrt {17}}}}-2{\sqrt {34+2{\sqrt {17}}}}}},} что, в свою очередь, следует из возможности сведения уравнения вида x F n − 1 = 0 , {\displaystyle x^{F_{n}}-1=0,} где F n {\displaystyle F_{n}} - любое простое число Ферма , с помощью замены переменной к квадратному уравнению.

    Вариации и обобщения

    • Построения с помощью одного циркуля. По теореме Мора - Маскерони с помощью одного циркуля можно построить любую фигуру, которую можно построить циркулем и линейкой. При этом прямая считается построенной, если на ней заданы две точки.
    • Построения с помощью одной линейки. Очевидно, что с помощью одной линейки можно проводить только проективно-инвариантные построения. В частности,
      • невозможно даже разбить отрезок на две равные части,
      • также невозможно найти центр данной окружности.
    Однако,
    • при наличии на плоскости заранее проведённой окружности с отмеченным центром с одной линейкой можно провести те же построения, что и циркулем и линейкой (