Сжатый и сжиженный газ автомобили. Разница между сжиженным и сжатым газом

Основой природного газа, который имеет природное (натуральное) происхождение является метан (CH4). Формирование природного газа произошло в процессе органического преобразования. Содержание метана в природном газе может колебаться в диапазоне от 91 до 99%, все остальное это - пропан, этан, бутан, а также азот.Такой разброс в процентах объясняется отличием химического состава газа, добытого в разных уголках нашей Земли. Однако, при сгорании природный газ разного происхождения выделяет одинаковое количество тепла, что делает его геопривязку абсолютно не важной как для вас, так и для вашего двигателя. Благодаря электронным датчикам газобаллонного оборудования, состав газа автоматически определяется после чего происходит регулировка пропорции топливной смеси с учетом особенностей этого газа.

Преимущества природного газа

Химический состав природного газа, благоприятно сказывается на состоянии двигателя и не влечет за собой проблем, связанных с эксплуатацией. Благодаря отсутствию в составе метана добавок, которые присутствуют в сжиженных углеводородных газах (СУГ ), продукты горения природного газа не содержат вредных включений. Более того, при сгорании природного газа уровень выбросов CO2 снижается на 25%.

Количество метана в природном газе это - как октановое число для бензина, по этому параметру принято характеризовать природный газ . Что это значит для двигателя? От этого параметра зависит работа двигателя, а также вероятность появления такого явления как детонация.

Сжатый природный газ (СПГ) имеет ряд неоспоримых преимуществ перед сжиженным нефтяным газом (СНГ), среди которых - экологичность и безопасность. Метан, которого, как вы уже знаете, в природном газе больше всего, быстро растворяется в воздухе, что практически сводит на нет вероятность воспламенения газа в случае повреждения . Способ хранения природного газа позволяет минимизировать вероятность неконтролируемой утечки. Исправные цилиндры обязаны выдерживать давление разрыва равное более чем 600 бар, а благодаря клапанной системе происходит контролируемая подача газа.

При работе на СПГ мотор может демонстрировать высокую производительность за счет высокого октанового числа (~130), в особенности, когда мотор оснащен турбиной или системой рециркуляции отработанных газов, а лучше и то и другое вместе. Хотя это имеет и обратную сторону, например, большое потребление газа, а также проблемы с теплоотдачей. Уровень шума двигателя во время работы на природном газе снижается на 3 дБ, поэтому такой тип топлива очень актуален для общественного транспорта. Сжатый природный газ, как и СНГ можно использовать как на бензиновых, так и , хотя в случае с дизелями вам придется столкнуться с низкой окупаемостью. Проблема в том, что на дизельный мотор потребуется устанавливать систему с искровым зажиганием или смешанный цикл, в котором дизельное топливо будет выступать в качестве в качестве поджигающего вещества.

Существуют также и недостатки у этого типа топлива

1. Низкая плотность энергии. Из-за этой особенности природный газ очень часто используется в сжатом виде. Давление или степень сжатия равно 20 МПа или 200 бар. В переводе на плотность энергии мы получаем 7 кдж/дм3, по сравнению с бензином у которого этот показатель равен 30 кдж/дм3 можно получить без каких-либо дополнительных операций по сжатию. Эта особенность природного газа приводит к тому, что мотор для того, чтобы работать на этом топливе должен быть оптимизирован для этого, а сам при этом буде существенно выше. При равных размерах газовых (СНГ и СПГ) на СНГ можно проехать больше, поэтому чтобы компенсировать низкую производительность, желающим использовать метан в качестве альтернативного топлива , приходится ставить на свои авто больше газовые резервуары. Это как вы понимаете ведет к увеличению общего веса автомобиля, и уменьшению свободного места в багажнике. Высокое давление, необходимое для хранения заполненных СПГ резервуаров (как правило, цилиндрической или круглой формы) делают емкости весьма громоздкими и в случае с легковушками отнимают много места.

Существует два вида систем способных работать на природном газе - моновалентные и двухвалентные.

  • Моновалентный тип предусматривает сжигание исключительно СПГ, который поступает из специального резервуара.
  • Бивалентный тип предусматривает одновременное использование газа вместе с основным топливом, за счет чего возникает экономия денежных средств и снижается расход бензина.

Общее описание поршневых компрессоров. Одноступенчатые и двухступенчатые. Вредное пространство

В соответствии с характером действия, поршневые компрессоры могут быть одинарного (или простого) действия и двойного действия. В агрегатах простого действия, за один ход поршня осуществляется одно всасывание или нагнетание. В компрессорах двойного действия, за один ход поршня осуществляется два всасывания или нагнетания.

По количеству ступеней сжатия поршневые компрессоры делятся на три типа: одноступенчатые, двухступенчатые и многоступенчатые. Ступенью сжатия принято называть часть компрессора, в которой газ сжимается до промежуточного или конечного давления.

Конструктивно, одноступенчатые компрессоры могут быть вертикальными или горизонтальными. Как правило, компрессоры с горизонтальной конструкцией являются машинами двойного действия, а компрессоры с вертикальной конструкцией относятся к агрегатам простого действия.

В одноступенчатом компрессоре простого действия с горизонтальным типом конструкции, поршень перемещается внутри цилиндра. Цилиндр оснащен крышкой, которая имеет всасывающий и нагнетательный клапаны. Поршень компрессора соединяется с шатуном и кривошипом. На валу кривошипа располагается маховик. В процессе хода поршня слева направо, в зоне между поршнем и цилиндром возникает разрежение. Разность давления в линии всасывания и цилиндре заставляет открываться клапан, в результате чего газ поступает в цилиндр. Когда поршень совершает обратное движение справа налево, всасывающий клапан закрывается, и газ в цилиндре сжимается до уровня давления p 2 . Далее, через клапан газ вытесняется в линию нагнетания. Цикл завершается и повторяется снова.

Одноступенчатый компрессор двойного действия оснащен четырьмя клапанами (двумя всасывающими и двумя нагнетательными). Такие машины устроены сложнее, но уровень производительности у них в два раза выше. В целях охлаждения цилиндр и крышки могут оснащаться водяными рубашками. Чтобы увеличить показатель производительности данные машины могут изготавливаться многоцилиндровыми конструкциями. Одноступенчатые компрессоры с вертикальным типом конструкции являются более производительными и быстроходными, чем горизонтальные. Кроме того, они занимают меньшую производственную площадь и более долговечны.

Двухступенчатые компрессоры с горизонтальным типом конструкции, как правило, оснащены одним цилиндром и ступенчатым или дифференциальным типом поршня. Газ подвергается сжатию в цилиндре левой стороной поршня, после чего проходит сквозь холодильник и подается в цилиндр с другой стороны, где сжимается до уровня p 2 .

Многоступенчатые конструкции оснащены цилиндрами, которые располагаются последовательно (система тандем) или параллельно (система компаунд). Существуют также оппозитные конструкции компрессоров, где поршни двигаются взаимно противоположно. Цилиндры в конструкциях данного типа располагаются по обе стороны вала.

Следует отметить, что реальный процесс сжатия газа в компрессоре отличается от теории. Так, между поршнем, когда он находится в крайнем положении и крышкой цилиндра есть некий свободный объем. Данный зазор носит название вредного пространства. В данном зазоре, по завершению нагнетания, сжатый газ расширяется при обратном ходе поршня. По этой причине всасывающий клапан открывается только после снижения уровня давления до уровня давлении на всасывании. Таким образом, поршень совершает холостое движение, что снижает производительность компрессора.

СЖАТИЕ ГАЗА

СЖАТИЕ ГАЗА , сокращение объема газа, достигаемое за счет приложения к нему внешнего давления. Некоторые газы, в том числе углекислый, можно превратить в жидкость путем сжатия при комнатной температуре. Другие газы необходимо предварительно охлаждать для того, чтобы их можно было превратить в жидкость под давлением. Самая высокая температура, при которой газ можно превратить в жидкость, применив к нему давление, называется критической.


.

Смотреть что такое "СЖАТИЕ ГАЗА" в других словарях:

    СЖАТИЕ, уменьшение объема вещества путем принудительного вмещения его в малое по объему пространство (например, при компрессии газа) или ограничения расширения нагреваемого вещества (как при приготовлении пищи в скороварке). Этот процесс… … Научно-технический энциклопедический словарь

    Сжатие, компрессия (от лат. compressio): В Викисловаре есть статья «сжатие» … Википедия

    - (a. gas cooling; н. Gasabkuhlung; Gaskuhlung; ф. refroidissement du gaz; и. refrigeracion de gas, enfriamiento de gas) понижение темп ры перекачиваемого газа на газовых сборных пунктах и компрессорных станциях магистральных газопроводов,… … Геологическая энциклопедия

    - (скачок уплотнения), распространяющаяся со сверхзвуковой скоростью тонкая переходная область, в к рой происходит резкое увеличение плотности, давления и скорости в ва. У. в. возникают при взрывах, детонации, при сверхзвуковых движениях тел, при… … Физическая энциклопедия

    Тепловые процессы Статья является частью одноименн … Википедия

    Перевод в ва из газообразного состояния в жидкое. С. г. возможно только при темп pax, меньших критической температуры. В пром сти С. г. с критич. темп рой выше темп ры окружающей среды (практически выше 50 °С) осуществляется сжатием газа в… … Большой энциклопедический политехнический словарь

    Природный газ - (Natural gas) Природный газ это один из самых распространенных энергоносителей Определение и применение газа, физические и химические свойства природного газа Содержание >>>>>>>>>>>>>>> … Энциклопедия инвестора

    И; ж. [от лат. compressio сжатие] 1. Техн. Сжатие воздуха, газа или горючей смеси под давлением в цилиндре двигателя. 2. Сокращение объёма написанного без ущерба для его содержания. Произвести необходимую компрессию текста статьи. * * *… … Энциклопедический словарь

    - (лат. compressio сжатие) сжатие газа в цилиндре двигателя, воздуха в компрессоре. Новый словарь иностранных слов. by EdwART, 2009. компрессия [лат. compressio] – сжатие; сжатие газа в цилиндре двигателя. Большой словарь иностранных слов.… … Словарь иностранных слов русского языка

    ГОСТ 28567-90: Компрессоры. Термины и определения - Терминология ГОСТ 28567 90: Компрессоры. Термины и определения оригинал документа: Hubkolbenverdichter oder Membranverdichter, Lage der Zylinder oder Membran rechtwinklig zueinander (Winkelbauart) 68 Определения термина из разных документов:… … Словарь-справочник терминов нормативно-технической документации

Книги

  • , Романенко Светлана Валентиновна. В издании представлен материал базового курса лекций по дисциплине&171;Сопротивление материалов&187;, читаемый в течение двух семестров в РГУ нефти и газа (НИУ) им. И. М. Губкина. Рассмотрены…
  • Сопротивление материалов. Учебное пособие , С. В. Романенко. В издании представлен материал базового курса лекций по дисциплине`Сопротивление материалов`, читаемый в течение двух семестров в РГУ нефти и газа (НИУ) им. И. М. Губкина. Рассмотрены…

Химический состав газа. Применение

Основную часть природного газа составляет метан (CH4) – до 98%. В состав природного газа могут также входить более тяжёлые углеводороды – гомологи метана:

этан (C 2 H 6),

пропан (C 3 H 8),

бутан (C 4 H 10),

а также другие неуглеводородные вещества:

водород (H 2),

сероводород (H 2 S),

диоксид углерода (СО 2),

гелий (Не).

Чистый природный газ не имеет цвета и запаха. Чтобы можно было определить утечку по запаху, в газ добавляют небольшое количество веществ, имеющих сильный неприятный запах (т. н. одорантов). Чаще всего в качестве одоранта применяется этилмеркаптан.

Углеводородные фракции – ценное сырьё для химической и нефтехимической промышленности. Они широко используются для получения ацетилена. Пиролизом этана получают этилен – важный продукт для органического синтеза. При окислении пропан-бутановой фракции образуются ацетальдегид, формальдегид, уксусная кислота, ацетон и др. продукты. Изобутан служит для производства высокооктановых компонентов моторных топлив, а также изобутилена – сырья для изготовления синтетического каучука. Дегидрированием изопентана получают изопрен – важный продукт при производстве синтетических каучуков.

Компримированный природный газ – сжатый природный газ, используемый в качестве моторного топлива вместо бензина, дизельного топлива и пропана.

Природный газ, как и любой другой, может быть сжат при помощи компрессора. При этом занимаемый им объем значительно уменьшается. Природный газ традиционно сжимается до давления 200–250 бар, что приводит к сокращению объема в 200-250 раз. Газ компримируют (сжимают) для транспортировки по магистральным газопроводам, для поддержания правильного давления внутри пласта (пластового давления) во время закачки под землю, а еще получение компримированного природного газа является промежуточной ступенью при производстве сжиженного природного газа. Компримированный природный газ дешевле традиционного топлива, а вызываемый продуктами его сгорания парниковый эффект меньше по сравнению с обычными видами топлива, поэтому он безопаснее для окружающей среды. Хранение и транспортировка компримированного природного газа происходит в специальных накопителях газа. Также используется добавление к компримированному природному газу биогаза, что позволяет снизить выбросы углерода в атмосферу.

Сжатый природный газ как топливо имеет целый ряд преимуществ:

· Метан (основной компонент природного газа) легче воздуха и в случае аварийного разлива он быстро испаряется, в отличие от более тяжёлого пропана, накапливающегося в естественных и искусственных углублениях и создающего опасность взрыва.



· Не токсичен в малых концентрациях;

· Не вызывает коррозии металлов.

· Компримированный природный газ дешевле, чем любое нефтяное топливо, в том числе и дизельное, но по калорийности их превосходит.

· Низкая температура кипения гарантирует полное испарение природного газа при самых низких температурах окружающего воздуха.

· Природный газ сгорает практически полностью и не оставляет копоти, ухудшающей экологию и снижающей КПД. Отводимые дымовые газы не имеют примесей серы и не разрушают металл дымовой трубы.

· Эксплуатационные затраты на обслуживание газовых котельных также ниже, чем традиционных.

Еще одной особенностью сжатого природного газа является то, что котлы, работающие на природном газе, имеют больший КПД – до 94 %, не требуют расхода топлива на предварительный его подогрев зимой (как мазутные и пропан-бутановые).

Природный газ, охлажденный после очистки от примесей до температуры конденсации (–161,5 0 С), превращается в жидкость, называемую сжиженным природным газом . Сжиженный газ представляет собой бесцветную жидкость без запаха, плотность которой в два раза меньше плотности воды. На 75-99% состоит из метана. Температура кипения –158…–163 0 C. В жидком состоянии не горюч, не токсичен, не агрессивен. Для использования подвергается испарению до исходного состояния. При сгорании паров образуется диоксид углерода и водяной пар. Объем газа при сжижении уменьшается в 600 раз, что является одним из основных преимуществ этой технологии. Процесс сжижения идет ступенями, на каждой из которых газ сжимается в 5-12 раз, затем охлаждается и передается на следующую ступень. Собственно сжижение происходит при охлаждении после последней стадии сжатия. Процесс сжижения, таким образом, требует значительного расхода энергии – до 25% от её количества, содержащегося в сжиженном газе. Сжиженный газ производится на так называемых ожижительных установках (заводах), после чего может быть перевезен в специальных криогенных емкостях – морских танкерах или цистернах для сухопутного транспорта. Это позволяет доставлять газ в те районы, которые находятся далеко от магистральных газопроводов, традиционно используемых для транспортировки обычного природного газа. Природный газ в сжиженном виде долго хранится, что позволяет создавать запасы. Перед поставкой непосредственно потребителю Сжиженный газ возвращают в первоначальное газообразное состояние на регазификационных терминалах. Первые попытки сжижать природный газ в промышленных целях относятся к началу XX века. В 1917 г. в США был получен первый сжиженный газ, но развитие трубопроводных систем доставки надолго отложило совершенствование этой технологии. В 1941 г. была совершена следующая попытка произвести СПГ, но промышленных масштабов производство достигло только с середины 1960-х гг. В России строительство первого завода сжиженного природного газа началось в 2006 г. в рамках проекта «Сахалин-2». Торжественное открытие завода состоялось зимой 2009 г.

Сланцевый газ – природный газ, добываемый из сланца, состоящий преимущественно из метана. Первая коммерческая газовая скважина в сланцевых пластах была пробурена в США в 1821 г. Масштабное промышленное производство сланцевого газа было начато компанией Devon Energy в США в начале 2000-х на месторождении Barnett Shale, которая на этом месторождении в 2002 г. пробурила впервые горизонтальную скважину. Благодаря резкому росту его добычи, названному «газовой революцией», в 2009 г. США стали мировым лидером добычи газа (745,3 млрд м 3), причём более 40% приходилось на нетрадиционные источники (метан из угольных пластов и сланцевый газ).

Ресурсы сланцевого газа в мире составляют 200 трлн м 3 . В январе 2011 г. экономист А.Д. Хайтун писал о возможности того, что сланцевый газ «повторит судьбу угольного метана со значительным падением прироста добычи при длительной эксплуатации месторождений или судьбу биотоплива, подавляющая часть мирового производства которого приходится на Америку, а сейчас сокращается».

Запасы и ресурсы газа

Мировые геологические запасы горючих газов на континентах, в зоне шельфов и мелководных морей, по прогнозной оценке, достигают 10 15 м 3 , что эквивалентно 10 12 т нефти.

Наиболее крупными месторождениями в СССР были: Уренгойское (4 трлн м 3) и Заполярное (1,5 трлн м 3), Вуктыльское (452 млрд м 3), Оренбургское (650 млрд м 3), Ставропольское (220 млрд м 3), Газли (445 млрд м 3) в Средней Азии; Шебслинское (390 млрд м 3) на Украине.

На полуострове Ямал и в прилегающих акваториях открыто 11 газовых и 15 нефтегазоконденсатных месторождений, разведанные и предварительно оцененные (АВС 1 +С 2) запасы газа которых составляют порядка 16 трлн м 3 , перспективные и прогнозные (С 3 -Д 3) ресурсы газа – около 22 трлн м 3 . Наиболее значительным по запасам газа месторождением Ямала является Бованенковское – 4,9 трлн м 3 (АВС 1 +С 2), которое в 2012 г. начнет разрабатываться, а газ поступит в новый магистральный газопровод Бованенково-Ухта. Начальные запасы Харасавэйского, Крузенштернского и Южно-Тамбейского месторождений составляют около 3,3 трлн м 3 газа.

Восточная Сибирь и Дальний Восток составляют порядка 60% территории Российской Федерации. Начальные суммарные ресурсы газа суши Востока России – 52,4 трлн м 3 , шельфа – 14,9 трлн м 3 .

В РФ добыча газа только ОАО «Газпром» в 2011 г. составила 513,2 млрд м 3 . При этом прирост запасов категории С 1 достиг рекордного уровня – 686,4 млрд м 3 , конденсата – 38,6 млн т. В 2012 г. планируется добыть 528,6 млрд м 3 газа и 12,8 млн т газового конденсата.

Конденсат

Конденсат – жидкий продукт сепарации природных газов. Представлен, в основном, жидкими в нормальных условиях УВ – пентаном и более тяжелыми УВ алканового, цикланового и аренового состава. Плотность обычно не превышает 0,785 г/см 3 , хотя известны разности с плотностью до 0,82 г/см 3 . Конец кипения от 200 до 350 0 С.

Различают сырой конденсат, полученный при сепарации, и стабильный , полученный путем глубокой дегазации сырого конденсата. Количество конденсата в пластовых газах выражается либо отношением его объема к объему сепарированного газа (см 3 /м 3) и называется конденсатным фактором . Количество конденсата, отнесенное к 1 м 3 сепарированного (свободного) газа, достигает 700 см 3 . В зависимости от величины конденсатного фактора газы бывают «сухие» (менее 10 см 3 /м 3), «тощие» (10-30 см 3 /м 3) и «жирные» (30-90 см 3 /м 3). Газы, характеризующиеся величиной газового фактора более 90 см 3 /м 3 называют газоконденсатом. На Вуктыльском нефтегазоконденсатном месторождении конденсатный фактор составляет 488-538 см 3 /м 3 , природные газы месторождений Западной Сибири, как правило, «сухие».

К атегория:

Автомобильные эксплуатационные материалы

Применение сжатого природного газа


Природный газ состоит в основном из метана и небольшой примеси других газообразных компонентов. Состав природного газа отличается в зависимости от его месторождения и может характеризоваться следующими средними значениями: метана 85…99, этана 1…8, пропана и бутана 0,5…3, пентана до 0.5…2, азота 0,5…0,7, углекислоты до 1,8% об.

Теплота сгорания природных газов отдельных месторождений может доходить до 47 МДж/м3, однако в среднем она составляет 33…36 МДж/м3. Эта величина почти в 1000 раз меньше, чем у жидкого нефтяного топлива, что и является основным недостатком природного газа как моторного топлива. Поэтому для обеспечения приемлемых эксплуатационных качеств автомобиля, прежде всего запаса хода при работе на природном газе, требуется его специальная подготовка: сжатие до давления 20 МПа и более с последующим хранением на автомобиле в баллонах высокого давления либо сжижение с помощью глубокого охлаждения до -162 °С с хранением в специальных криогенных (теплоизолированных) емкостях. Из-за большей простоты наиболее широко применяется природный газ в сжатом виде.



К природному газу, используемому в сжатом виде в качестве моторного топлива, предъявляются следующие специфические требования: отсутствие пыли и жидкого остатка, а также минимальная влажность. Последнее требование связано с исключением возможности закупорки каналов топливной системы, вызываемой замерзанием и выпадением гидратов вследствие дросселирования и снижения температуры газа при заправке автомобиля. Для обеспечения выполнения этих требований природный газ подвергается очистке с помощью фильтрующего, сепарационного и осушительного оборудования, установленного на газонаполнительных станциях.

В соответствии с ТУ 51-166-83 «Газ горючий природный сжатый, топливо для газобаллонных автомобилей», для заправки газовых автомобилей предназначены две марки СПГ (табл. 7). Их отличием является различное содержание метана и азота. В составе СПГ ограничено содержание следующих продуктов (г/м3, не более): сероводорода-0,02; меркаптановой серы- 0,016; механических примесей - 0,001; влаги - 0,009. Массовая доля сероводородной и меркаптановой серы в СПГ не должна превышать 0,1%.

В настоящее время наибольшее распространение получило использование природного газа в сжатом виде на автомобилях с двигателями внешнего смесеобразования и принудительным (искровым) воспламенением. Обычно на автомобиль с карбюраторным двигателем дополнительно устанавливаются баллоны для хранения природного газа под высоким давлением, газовые редукторы, электромагнитные клапаны и другая газовая арматура, обеспечивающая возможность работы двигателя на газе. Универсальность питания такого автомобиля (бензин или природный газ) является и его недостатком, так как не позволяет полностью использовать высокую детонационную стойкость природного газа.

Опыт эксплуатации отечественных газовых автомобилей, работающих на СПГ , выявил ряд положительных сторон, схожих с достоинствами при работе на СПГ . При использовании СПГ в качестве моторного топлива моторесурс двигателя увеличивается на 35…40%, срок службы свечей на 30…40%, расход моторного масла снижается благодаря увеличению периодичности (срока) его смены в 2…3 раза. Вместе с тем перевод на сжатый природный газ бензиновых автомобилей ведет к ухудшению ряда их эксплуатационных показателей. Мощность двигателя снижается на 18…20%, что ведет к снижению максимальной скорости на 5…6%, увеличению времени разгона на 24…30% и уменьшению максимальных углов преодолеваемых подъемов. Из-за большой массы баллонов для хранения газа высокого давления грузоподъемность автомобиля снижается на 9…14%. Дальность ездки на одной заправке газа не превышает 200…280 км.

Из-за наличия дополнительной топливной системы трудоемкость технического обслуживания и ремонта газового автомобиля увеличивается на 7…8%.

При использовании природного газа в качестве моторного топлива отмечены его плохие пусковые свойства. Предельное значение температуры холодного пуска двигателя (без дополнительных средств подогрева) на природном газе на 3…8 °С выше, чем на СНГ , и на 10…12 °С, чем на бензине. Трудность пуска объясняется высокой температурой воспламенения метана, а также тем, что в процессе воспламенения после нескольких вспышек на свечах осаждается вода, шунтирующая искровой промежуток.

Важным достоинством газовых топлив по сравнению с нефтяными являются лучшие экологические свойства, связанные прежде всего с уменьшением выбросов вредных веществ с отработавшими газами двигателя. Как известно, такими веществами являются окись углерода СО, окислы азота NO.t, суммарные углеводороды СН и в случае применения этилированных бензинов соединения свинца. Применение газовых топлив, отличающихся высокой детонационной стойкостью, исключает необходимость использования токсичного антидетонатора ТЭС и поэтому является эффективным фактором снижения загрязнения окружающей среды высокотоксичными свинцовыми соединениями. Изменение содержания окиси углерода при работе двигателя на газе и бензине в зависимости от состава топливно-воздушной смеси примерно одинаково. Однако, учитывая возможность работы газового двигателя на более бедных смесях, при его оптимальной регулировке обеспечиваются более низкие концентрации СО. Уровни выбросов СН также примерно одинаковы, однако их состав принципиально отличен. Вредное воздействие углеводородов, образующихся в продуктах сгорания нефтяных топлив, связано главным образом с образованием смога. При работе на природном газе углеводородная часть отработавших газов состоит в основном из метана, обладающего высокой устойчивостью к образованию смога.

Окислы азота являются наиболее токсичными компонентами отработавших газов. Их максимальное содержание для газового двигателя примерно в 2 раза меньше, чем для бензинового. Кроме того, оно может быть дополнительно снижено в 2…3 раза за счет регулировки состава топливной смеси.

Исходя из рассмотренных факторов применение газовых автомобилей на СПГ наиболее рационально на внутригородских грузовых перевозках для обслуживания предприятий торговли, быта и др. Использование природного газа перспективно и на городском пассажирском автотранспорте ввиду снижения в этом случае вредных выбросов, загрязняющих атмосферу. Для этой цели в нашей стране начат выпуск газовых автобусов ЛАЗ -695НГ и газовой модификации легкового автомобиля-такси ГАЗ -24-27.

Наиболее массовым автомобилем, работающим на сжатом природном газе, является грузовой автомобиль ЗИЛ -1Э8А. Основные элементы универсальной системы питания этого автомобиля, обеспечивающей работу на газе и бензине, использованы во всех других моделях газовых автомобилей. Газовая система питания автомобиля ЭИЛ -138А (рис. 23) включает восемь баллонов из углеродистой стали объемом 50 л каждый, рассчитанных на рабочее давление 20 МПа. Баллоны соединены трубками высокого давления и разделены на две секции с отдельными запорными вентилями 12. Заправка баллонов газом осуществляется с помощью вентиля. Перед подачей в двигатель газ проходит теплообменник, в котором подогревается горячими отработавшими газами двигателя. Для снижения давления газа используется редуктор высокого давления (снижает давление до 1,2 МПа) и низкого давления 5. Для контроля за работой системы питания служат два манометра, находящиеся в кабине водителя.

Рис. 1. Принципиальная схема топливной системы автомобиля ЗИЛ -1Э8А

Рис. 2. Схема газодизельной топливной системы автомобиля КамАЗ: 1 -двигатель; 2- ТНВД ; 3-дозатор газа; 4 - электромагнитный клапан с фильтром; 5-редуктор высокого давления; 6 - подогреватель газа; 7- вентили; 8 - манометр; 9 - редуктор низкого давления; 10- баллон; 11- смеситель; 12 - педаль подачи топлива

Резервная система питания бензином включает стандартный бензобак, электромагнитный клапан-фильтр, бензонасос и карбюратор-смеситель. Переход с одного вида топлива на другой осуществляется с помощью электромагнитных клапанов.

Общая вместимость баллонов составляет 400 л, что позволяет заправить 80 м3 газа при массе газобаллонной установки около 800 кг.

Сложность применения газовых топлив в дизельных двигателях связана с их плохой воспламеняемостью, низким цетановым числом и высокой температурой воспламенения. Поэтому для организации работы дизеля на природном газе используется газодизельный процесс, заключающийся в подаче в цилиндры дозы запального дизельного топлива, обеспечивающего воспламенение газовоздушной смеси.

Газодизельный процесс использован в ряде газовых модификаций автомобилей семейства КамАЗ, а также дизельных автобусах. В состав газодизельной системы питания автомобилей КамАЗ входит 8… 10 газовых баллонов высокого давления. Сжатый газ из баллонов поступает в подогреватель 6, где подогревается с помощью тепла охлаждающей жидкости. В редукторе давление газа снижается до 0,95… 1,1 МПа. После этого через электромагнитный клапан-фильтр он поступает в двухступенчатый редуктор низкого давления и затем через дозатор газа в смеситель, где смешивается с воздухом. Газовоздушная смесь подается в цилиндры двигателя, где в конце такта сжатия в нее через обычную форсунку впрыскивается запальная доза дизельного топлива.

Привод рычага управления регулятором топливного насоса высокого давления (ТНВД ) соединен тягой с приводом дроссельной заслонки дозатора. С помощью специального механизма обеспечивается постоянство расхода запальной дозы дизельного топлива в газодизельном режиме работы двигателя независимо от положения педали подачи топлива. Пуск газодизельного двигателя и его работа на холостом ходу происходят только на дизельном топливе. На остальных режимах повышение мощности двигателя достигается путем увеличения подачи газового топлива. Величина подачи запальной дозы составляет 15…20% от суммарного расхода топлива.

Заправка автомобилей природным газом осуществляется на стационарных автомобильных газонаполнительных станциях (АГНКС ) или с помощью передвижных автогазозаправщиков (ПАГЗ ). Типовая АГНКС обеспечивает 500 заправок в сутки. Ее технологическая схема состоит из пяти основных функциональных блоков: сепараторов, компрессоров, осушки, аккумуляторов газа и раздаточных колонок. АГНКС является сложным сооружением, включающим производственно-технологический корпус с газораздаточной и операторной, заправочную площадку с боксами для стоянки автомобилей и внешние коммуникации (подключение к газовой сети, водопровод, линия электропередачи и др.). Газ, поступающий из внешней сети, проходит сепарацию, далее сжимается компрессорами до 25 МПа и подается в установку осушки. Сухой газ направляется для хранения в аккумуляторы, откуда через газозаправочные колонки поступает на заправку автомобилей.

Рис. 3. Технологическая схема стационарной АГНКС

Число заправочных колонок на АГНКС - 8, время заправки с учетом всех операций составляет: для грузового автомобиля 10…12 мин, легкового - 6…8 мин.

Для заправки автомобилей автотранспортных предприятий, удаленных от АГНКС , используются передвижные автогазозаправщики (ПАГЗ ). На ПАГЗ смонтирована газобаллонная установка, снабженная блоками зарядки газом заправщика и раздачи газа автомобилям. Газобаллонная установка обычно включает три секции газовых баллонов объемом 400 fl каждая с давлением 32 МПа для ступенчатой заправки автомобилей бескомпрессорным способом. Заправка осуществляется с помощью двух раздаточных устройств.