Метан кислотные свойства. Физико-химические свойства метана

Метан (болотный газ; СН 4) - это простейший предельный углеводород. Бесцветный, не имеющий запаха газ, t° плавления -182,48°. Метан легко загорается; смесь метана с воздухом взрывоопасна.

Метан является основным компонентом природного газа (60-99%), рудничного газа (35-40%), а также различных продуктов анаэробного разложения органических веществ, например болотного газа, газов полей орошения. В больших количествах метан образуется при коксовании каменного угля, гидрировании угля и в других промышленных производствах.

Метан используется как топливо при газификации, а также для промышленного синтеза углеводородов большого мол. веса. При неполном сгорании или каталитическом окислении метана образует метанол (см. Метиловый спирт), (см.), ацетилен (см.). Метан используют также в производстве сажи, хлористого метила, хлорбромбензола, нитрометана, и других продуктов.

Метан обнаруживается в кишечных газах (в результате метанового брожения), в крови животных и человека.

Метан является наиболее инертным соединением из группы парафиновых углеводородов. Физиологический метан индифферентен и может вызывать отравления лишь в очень высокой концентрации (из-за малой растворимости метана в воде и крови). Вместе с тем токсическое действие метана проявляется и при более низких концентрациях метана в воздухе. Так, при содержании в воздухе 25-30% метана появляются первые признаки (учащение пульса, увеличение объема дыхания, нарушение координации тонких мышечных движений и т. д.). Более высокие концентрации метана в воздухе вызывают у человека головную боль. В полной мере токсическое действие метана проявляется лишь при повышенном давлении (2-3 атм).

Первая помощь при остром отравлении: удаление пострадавшего из вредной атмосферы. Грелки. При отсутствии дыхания немедленно (до прихода врача) искусственное дыхание, которое прекращается только после появления признаков трупного окоченения.

Хроническое действие метана. У работающих на или производствах, где в воздухе присутствуют метан и другие углеводороды ряда метана, описаны заметные сдвиги со стороны (положительный глазо-сердечный рефлекс, резко выраженная атропиновая проба, ). Тем не менее хроническое действие метана не вызывает тяжелых органических изменений, хотя некоторые исследователи связывают возникновение у шахтеров нистагма с длительным воздействием метана.

Профилактика отравлений метаном. В подземных выработках не допускается содержание метана выше 0,75 об.%. При повышении содержания метана рабочие должны быть непременно удалены, а помещения - проветрены. Главной мерой предупреждения скоплений метана в шахтах является наличие хорошей вентиляции. При индивидуальной защите необходимо применение шлемов с принудительной подачей воздуха или дыхательных аппаратов, снабженных запасом воздуха.

, взрывоопасные газы , парниковый эффект

Часто этот взрывоопасный газ называют «болотным». Всем известен его специфический запах, но на самом деле это — специальные добавки «с запахом газа», которые добавляются для того, чтобы его распознать. При сгорании он практически не оставляет вредных продуктов. Помимо всего прочего, этот газ довольно активно участвует в образовании всем известного парникового эффекта.

Газ, обычно связанный с живыми организмами. Когда в атмосферах Марса и Титана обнаружился метан, у ученых появилась надежда на то, что на этих планетах существует жизнь. На Красной планете метана немного, а вот Титан буквально «залит» им. И уж если не для Титана, то для Марса биологические источники метана столь же вероятны, как и геологические. Метана много на планетах-гигантах - Юпитере, Сатурне, Уране и Нептуне, где он возник как продукт химической переработки вещества протосолнечной туманности. На Земле он редок: его содержание в атмосфере нашей планеты - всего 1750 частей на миллиард по объему (ppbv).

Источники и получение метана

Метан - простейший углеводород, бесцветный газ без запаха. Его химическая формула - CH 4 . Малорастворим в воде, легче воздуха. При использовании в быту, промышленности в метан обычно добавляют одоранты со специфическим «запахом газа». Основной компонент природных (77-99%), попутных нефтяных (31-90%), рудничного и болотного газов (отсюда другие названия метана - болотный или рудничный газ).

На 90–95% метан имеет биологическое происхождение. Травоядные копытные животные, такие как коровы и козы, испускают пятую часть годового выброса метана: его вырабатывают бактерии в их желудках. Другими важными источниками служат термиты, рис-сырец, болота, фильтрация естественного газа (это продукт прошлой жизни) и фотосинтез растений. Вулканы вносят в общий баланс метана на Земле менее 0,2%, но источником и этого газа могут быть организмы прошлых эпох. Промышленные выбросы метана незначительны. Таким образом, обнаружение метана на планете типа Земли указывает на наличие там жизни.

Метан образуется при термической переработке нефти и нефтепродуктов (10-57% по объёму), коксовании и гидрировании каменного угля (24-34%). Лабораторные способы получения: сплавление ацетата натрия со щелочью, действие воды на метилмагнийиодид или на карбид алюминия.

В лаборатории получают нагреванием натронной извести (смесь гидроксидов натрия и калия) или безводного гидроксида натрия с уксусной кислотой. Для этой реакции важно отсутствие воды, поэтому и используется гидроксид натрия, так как он менее гигроскопичен.

Свойства метана

горит в воздухе голубоватым пламенем, при этом выделяется энергия около 39 МДж на 1м 3 . С воздухом образует взрывоопасные смеси . Особую опасность представляет метан, выделяющийся при подземной разработке месторождений полезных ископаемых в горные выработки, а также на угольных обогатительных и брикетных фабриках, на сортировочных установках. Так, при содержании в воздухе до 5–6% метан горит около источника тепла (температура воспламенения 650-750 °С), от 5–6% до 14–16% взрывается, свыше 16% может гореть при притоке кислорода извне. Снижение при этом концентрации метана может привести к взрыву. Кроме того, значительное увеличение концентрации метана в воздухе бывает причиной удушья (например, концентрации метана 43% соответствует 12% O 2).

Взрывное горение распространяется со скоростью 500-700 м/сек; давление газа при взрыве в замкнутом объёме равно 1 Мн/м 2 . После контакта с источником тепла воспламенение метана происходит с некоторым запаздыванием. На этом свойстве основано создание предохранительных взрывчатых веществ и взрывобезопасного электрооборудования. На объектах, опасных из-за присутствия метана (главным образом, угольные шахты), вводится т.н. газовый режим.

При 150-200 °С и давлении 30-90 атм метан окисляется до муравьиной кислоты.

Метан образует соединения включения - газовые гидраты, широко распространенные в природе.

Применение метана

Метан - наиболее термически устойчивый насыщенный углеводород. Его широко используют как бытовое и промышленное топливо и как сырьё для промышленности . Так, хлорированием метана производят метилхлорид, метиленхлорид, хлороформ, четырёххлористый углерод.

При неполном сгорании метана получают сажу , при каталитическом окислении - формальдегид , при взаимодействии с серой - сероуглерод .

Термоокислительный крекинг и электрокрекинг метана- важные промышленные методы получения ацетилена .

Каталитическое окисление смеси метана с аммиаком лежит в основе промышленного производства синильной кислоты. Метан используют как источник водорода в производстве аммиака, а также для получения водяного газа (т. н. синтез-газа): CH 4 + H 2 O → CO + 3H 2 , применяемого для промышленного синтеза углеводородов, спиртов, альдегидов и др. Важное производное метана - нитрометан .

Автомобильное топливо

Метан широко используется в качестве моторного топлива для автомобилей. Однако плотность природного метана в тысячу раз ниже плотности бензина. Поэтому, если заправлять автомобиль метаном при атмосферном давлении, то для равного с бензином количества топлива понадобится бак в 1000 раз больше. Чтобы не возить огромный прицеп с топливом, необходимо увеличить плотность газа. Это можно достичь сжатием метана до 20-25 МПа (200-250 атмосфер). Для хранения газа в таком состоянии используются специальные баллоны, которые устанавливаются на автомобилях.

Метан и парниковый эффект

Метан является парниковым газом . Если степень воздействия углекислого газа на климат условно принять за единицу, то парниковая активность метана составит 23 единицы. Содержание в атмосфере метана росло очень быстро на протяжении последних двух столетий.

Сейчас среднее содержание метана CH 4 в современной атмосфере оценивается как 1,8 ppm (parts per million , частей на миллион). И, хотя это в 200 раз меньше, чем содержание в ней углекислого газа (CO 2), в расчете на одну молекулу газа парниковый эффект от метана - то есть его вклад в рассеивание и удержание тепла, излучаемого нагретой солнцем Землей - существенно выше, чем от СО 2 . Кроме того, метан поглощает излучение Земли в тех «окошках» спектра, которые оказываются прозрачными для других парниковых газов. Без парниковых газов - СO 2 , паров воды, метана и некоторых других примесей средняя температура на поверхности Земли была бы всего –23°C , а сейчас она около +15°C.

Метан высачивается на дне океана через трещины земной коры, выделяется в немалом количестве при горных разработках и при сжигании лесов. Недавно обнаружен новый, совершенно неожиданный источник метана - высшие растения, но механизмы образования и значение данного процесса для самих растений пока не выяснены.

Метан на Земле

Недалеко от Санта-Барбары со дна океана в больших объемах в виде пузырьков выделяется метан – активный парниковый газ

Особенно опасен метан при проведении горных работ

Метан вместо бензина? Легко

Когда в атмосфере Марса был обнаружен метан, у ученых появилась надежда найти на планете следы жизни

В таблице указана плотность метана при различных температурах , включая плотность этого газа при нормальных условиях (при 0°С). Также приведены его теплофизические свойства и характеристики других газов метанового ряда.

Представлены следующие теплофизические свойства газов метанового ряда: коэффициент теплопроводности λ , η , число Прандтля Pr , кинематическая вязкость ν , массовая удельная теплоемкость C p , отношение теплоемкостей (показатель адиабаты) k , коэффициент температуропроводности a и плотность газов метанового ряда ρ . Свойства газов даны при нормальном атмосферном давлении в зависимости от температуры — в интервале от 0 до 600°С.

К газам метанового ряда относятся углеводороды с брутто-формулой C n H 2n+2 такие, как: метан CH 4 , этан C 2 H 6 , бутан C 4 H 10 , пентан C 5 H 12 , гексан C 6 H 14 , гептан C 7 H 16 , октан C 8 H 18 . Их еще называют гомологический ряд метана.

Плотность газов метанового ряда при увеличении их температуры снижается из-за теплового расширения газа. Такой характер зависимости плотности от температуры свойственен и . Следует также отметить, что плотность газов метанового ряда растет по мере увеличения количества атомов углерода и водорода в молекуле газа (числа n в формуле C n H 2n+2).

Наиболее легким газом из рассмотренных в таблице является метан — плотность метана при нормальных условиях равна 0,7168 кг/м 3 . Метан при нагревании расширяется и становиться менее плотным. Так, например при температуре 0°С и 600°С, плотность метана отличается приблизительно в 3 раза.

Теплопроводность газов метанового ряда снижается при увеличении числа n в формуле C n H 2n+2 . При нормальных условиях она изменяется в диапазоне от 0,0098 до 0,0307 Вт/(м·град). По данным в таблице следует, что наибольшей теплопроводностью обладает такой газ, как метан — его коэффициент теплопроводности, например при 0°С, равен 0,0307 Вт/(м·град).

Наименьшая теплопроводность (0,0098 Вт/(м·град) при 0°С) свойственна газу октану. Следует отметить, что при нагревании газов метанового ряда их теплопроводность увеличивается.

Удельная массовая теплоемкость газов, входящих в гомологический ряд метана при нагревании увеличивается. Также увеличивают свои значения такие их свойства, как вязкость и температуропроводность.

Предельные, углеводороды ряда метана (алканы)

Алканы, или парафины - алифатические предельные углеводороды, в молекулах которых атомы углерода связаны между собой простой s -связью. Оставшиеся валентности углеродного атома, не затраченные на связь с другими атомами углерода, полностью насыщены водородом. Поэтому предельные углеводороды содержат в молекуле максимальное число водородных атомов.

Углеводороды ряда алканов имеют общую формулу C n H 2n+2 . В таблице представлены некоторые представители ряда алканов и их некоторые физические свойства.

Формула

Название

Название радикала

Т пл. 0 С

Т кип. 0 С

CH 4

метан

метил

C 2 H 6

этан

этил

C 3 H 8

пропан

пропил

C 4 H 10

бутан

бутил

C 4 H 10

изобутан

изобутил

C 5 H 12

пентан

пентил

C 5 H 12

изопентан

изопентил

C 5 H 12

неопентан

неопентил

C 6 H 14

гексан

гексил

C 7 H 16

гептан

гептил

C 10 H 22

декан

децил

C 15 H 32

пентадекан

C 20 H 42

эйкозан

Из таблицы видно, что эти углеводороды отличаются друг от друга количеством групп - СН 2 - .Такой ряд сходных по строению, обладающих близкими химическими свойствами и отличающихся друг от друга числом данных групп называется гомологическим рядом. А вещества, составляющие его, называются гомологами .

Тренажёр №1 - Гомологи и изомеры

Тренажёр №2. - Гомологический ряд предельных углеводородов

Физические свойства

Первые четыре члена гомологического ряда метана - газообразные вещества, начиная с пентана - жидкости, а углеводороды с числом углеродных атомов 16 и выше - твердые вещества (при обычной температуре). Алканы - неполярные соединения и трудно поляризуемые. Они легче воды и в ней практически не растворяются. Не растворяются также в других растворителях с высокой полярностью. Жидкие алканы - хорошие растворители для многих органических веществ. Метан и этан, а также высшие алканы не имеют запаха. Алканы - горючие вещества. Метан горит бесцветным пламенем.

Получение алканов

Для получения алканов используют в основном природные источники.

Газообразные алканы получают из природного и попутных нефтяных газов, а твердые алканы - из нефти. Природной смесью твердых высокомолекулярных алканов является горный воск - природный битум.

1. Из простых веществ:

n C + 2n Н 2 500 °С, кат → С n Н 2n + 2

2. Действие металлического натрия на галогенопроизводные алканов- реакция А.Вюрца :

2CH 3 -Cl + 2Na → CH 3 -CH 3 + 2NaCl

Химические свойства алканов

1. Реакции замещения - Галогенирование (стадийно)

CH 4 + Cl 2 hν → CH 3 Cl (хлорметан) + HCl (1 стадия) ;

метан

CH 3 Cl + Cl 2 CH 2 Cl 2 (дихлорметан)+ HCl (2 стадия);

С H 2 Cl 2 + Cl 2 hν → CHCl 3 (трихлорметан)+ HCl (3 стадия);

CHCl 3 + Cl 2 hν → CCl 4 (хлорметан)+ HCl (4 стадия).

2. Реакции горения (горят светлым не коптящим пламенем)

C n H 2n+2 + O 2 t → nCO 2 + (n+1)H 2 O

3. Реакции разложения

а) Крекинг при температуре 700-1000°С разрываются (-С-С-) связи:

C 10 H 22 → C 5 H 12 + C 5 H 10

б) Пиролиз при температуре 1000°С разрываются все связи, продукты – С (сажа) и Н 2:

С H 4 1000°С → C + 2 H 2

Применение

· Предельные углеводороды находят широкое применение в самых разнообразных сферах жизни и деятельности человека.

· Использование в качестве топлива – в котельных установках, бензин, дизельное топливо, авиационное топливо, баллоны с пропан-бутановой смесью для бытовых плит

· Вазелин используется в медицине, парфюмерии, косметике, высшие алканы входят в состав смазочных масел, соединения алканов применяются в качестве хладагентов в домашних холодильниках

· Смесь изомерных пентанов и гексанов называется петролейным эфиром и применяется в качестве растворителя. Циклогексан также широко применяется в качестве растворителя и для синтеза полимеров.

· Метан используется для производства шин и краски

· Значение алканов в современном мире огромно. В нефтехимической промышленности предельные улеводороды являются базой для получения разнообразных органических соединений, важным сырьем в процессах получения полупродуктов для производства пластмасс, каучуков, синтетических волокон, моющих средств и многих других веществ. Велико значение в медицине, парфюмерии и косметике.

Задания для закрепления

№1. Составьте уравнения реакций горения этана и бутана.

№2. Составьте уравнения реакций получения бутана из следующих галогеналканов:

CH 3 - Cl (хлорметан) и C 2 H 5 - I (йодэтан).

№3. Осуществите превращения по схеме, назовите продукты:

C→ CH 4 → CH 3 Cl → C 2 H 6 → CO 2

№4. Реши кроссворд

По горизонтали:

1. Алкан, имеющий молекулярную формулу С 3 Н 8 .
2. Простейший представитель предельных углеводородов.
3. Французский химик, имя которого носит реакция получения углеводородов с более длинной углеродной цепью взаимодействием галогенопроизводных предельных углеводородов с металлическим натрием.
4. Геометрическая фигура, которую напоминает пространственное строение молекулы метана.
5. Трихлорметан.
6. Название радикала С 2 Н 5 –.
7. Наиболее характерный вид реакций для алканов.
8. Агрегатное состояние первых четырех представителей алканов при нормальных условиях.

Если вы правильно ответили на вопросы, то в выделенном столбце по вертикали получите одно из названий предельных углеводородов. Назовите это слово?